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Introduction

The Pythia program is a standard tool for the generation of high-energy collisions (specif-
ically, it focuses on centre-of-mass energies greater than about 10 GeV), comprising a
coherent set of physics models for the evolution from a few-body high-energy (“hard”)
scattering process to a complex multihadronic final state. The particles are produced in
vacuum. Simulation of the interaction of the produced particles with detector material is
not included in Pythia but can, if needed, be done by interfacing to external full (such
as Geant or Fluka) or fast (such as Pgs or Delphes) detector-simulation codes.

The Pythia code package contains a library of hard interactions and models for initial-
and final-state parton showers, multiple parton-parton interactions, beam remnants,
string fragmentation and particle decays. It also has a set of utilities and interfaces
to external programs.

The objective of this exercise is to teach you the basics of how to use the Pythia 8.1 event
generator to study various physics aspects. As you become more familiar you will better
understand the tools at your disposal, and can develop your own style to use them. Within
this first exercise it is not possible to describe the physics models used in the program;
for this we refer to the Pythia 8.1 brief introduction [1], to the full Pythia 6.4 physics
description [2], and to all further references found in them. More general introductions
to the physics of event generators can be found in the recent MCnet review on general-

1



purpose event generators for LHC physics [3], and in summer-school lecture notes such
as [4, 5].

Pythia 8 is written in C++. If you are not familiar with C or C++, an additional
programming reference in addition to these notes will therefore be useful. Nonetheless,
most of the examples we will cover should be fairly straightforward to follow given just
some basic knowledge of computer programming. By today’s standards, Pythia 8 is a
small package. It is completely self-contained, and is therefore easy to install for stan-
dalone usage, e.g. if you want to have it on your own laptop, or if you want to explore
physics or debug code without any danger of destructive interference between different
libraries. Section 1 describes the installation procedure, which is what we will need for
this introductory session. In section 1, we will also use a browser to open the Pythia
HTML documentation pages, which are included together with the code, and which con-
tain a complete list of all parameters and switches, descriptions of the available methods,
example programs, and interfaces, and explanations of how to use Pythia’s output and
physics analysis tools.

When you use Pythia you are expected to write the main program yourself, for maximal
flexibility and power. Several examples of such main programs are included with the
code, to illustrate common tasks and help getting started. Section 2 gives you a simple
step-by-step recipe how to write a minimal main program, that can then gradually be
expanded in different directions, e.g. as in Section 3.

In Section 4 you will see how the parameters of a run can be read in from a file, so that the
main program can be kept fixed. Many of the provided main programs therefore allow you
to create executables that can be used for different physics studies without recompilation,
but potentially at the cost of some flexibility.

While Pythia can be run standalone, it can also be interfaced with a set of other libraries,
such as FastJet (for jet clustering), HepMC (the standard format used by experimen-
talists to store generated events), Lhapdf (for additional parton distribution functions),
Madgraph (for additional hard processes, in particular for scenarios beyond the Stan-
dard Model), Root (the standard analysis and plotting tool used by experimentalists),
Vincia (for an alternative parton-shower model and a Root-based runtime display), and
several others. We refer to the example programs included both with Pythia and with
these other packages for how to extend your work with Pythia in these directions. The
Pythia HTML manual also contains a section labeled “Link to Other Programs” that
you can consult.

Finally, Section 5 gives some suggestions for the study of other possible physics topics
and non-standard options.

1 Installation

Denoting a generic Pythia 8 version pythia81xx (at the time of writing xx = 65), here
is how to install Pythia 8 on a Linux/Unix/MacOSX system as a standalone package.

1. In a browser, go to
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http://www.thep.lu.se/∼torbjorn/Pythia.html
2. Download the (current) program package

pythia81xx.tgz

to a directory of your choice (e.g. by right-clicking on the link).

3. In a terminal window, cd to where pythia81xx.tgz was downloaded, and type
tar xvfz pythia81xx.tgz

This will create a new (sub)directory pythia81xx where all the Pythia source files
are now ready and unpacked.

4. Move to this directory (cd pythia81xx) and do a make. This will take ∼3 minutes
(computer-dependent). The Pythia 8 libraries are now compiled and ready for
physics.

5. For test runs, cd to the examples/ subdirectory. An ls reveals a list of programs,
mainNN, with NN from 01 through 28 (and beyond). These example programs each
illustrate an aspect of Pythia 8. For a list of what they do, see the “Sample Main
Programs” page in the online manual (point 6 below).
Initially only use one or two of them to check that the installation works. Once you
have worked your way though the introductory exercises in the next sections you
can return and study the programs and their output in more detail.
To execute one of the test programs, do

make mainNN

./mainNN.exe

The output is now just written to the terminal, stdout. To save the output to a
file instead, do ./mainNN.exe > mainNN.out, after which you can study the test
output at leisure by opening mainNN.out. See Section 2 for an explanation of the
event record that is listed in several of the runs.

6. If you use a web browser to open the file
pythia81xx/htmldoc/Welcome.html

you will gain access to the online manual, where all available methods and param-
eters are described. Use the left-column index to navigate among the topics, which
are then displayed in the larger right-hand field.

2 A “Hello World” program

We will now generate a single proton-proton collision at the LHC, in which two gluons
interact to produce a top quark pair, gg→ tt.

Open a new file mymain.cc in the examples subdirectory with a text editor, e.g. Emacs.
Then type the following lines (here with explanatory comments added):

// Headers and Namespaces.

#include "Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.
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// Set up generation.

Pythia pythia; // Declare Pythia object

pythia.readString("Top:gg2ttbar = on"); // Switch on process.

pythia.readString("Beams:eCM = 7000."); // 7 TeV CM energy.

pythia.init(); // Initialize; incoming pp beams is default.

// Generate event(s).

pythia.next(); // Generate an(other) event. Fill event record.

return 0;

} // End main program with error-free return.

If you are unfamiliar with C++, pay particular attention to getting all quotation marks,
semicolons, and opening and closing brackets exactly right, as in the above example.

Next you need to edit the Makefile (the one in the examples subdirectory) so it knows
what to do with mymain.cc. The lines

# Create an executable for one of the normal test programs

main00 main01 main02 main03 ... main09 main10 main10 \

and the three next enumerate the main programs that do not need any external libraries.
Edit the last of these lines to include also mymain:

main31 ... main40 mymain: \

Now it should work as before with the other examples:
make mymain

./mymain.exe > mymain.out

whereafter you can study mymain.out, especially the example of a complete event record
(preceded by initialization information, and by kinematical-variable and hard-process list-
ing for the same event).

2.1 The Event Record

The event record is set up to store every step in the evolution from an initial low-
multiplicity partonic process (such as gg → tt̄) to a final high-multiplicity hadronic state
(such as, to take an arbitrary example, pp → n0π+ρ0B−µ+νµB

∗+
s e−ν̄eK

0K−∆++, which
could be produced via the aforementioned partonic subprocess), in the order that new
particles are generated by the program. The record is a vector of particles, that expands
to fit the needs of the current event (plus some additional pieces of information not dis-
cussed here). Thus event[i] is the i’th particle of the current event, and you may study
its properties by using various event[i].method() possibilities.

An important part of the event record is that many copies of the same particle may exist,
but only those with a positive status code (explained below) are still present in the final
state. To exemplify, consider a top quark produced in the hard interaction, initially with
positive status code. When later, a shower branching t→ tg occurs, the new t and g are
added at the bottom of the then-current event record, but the old t is not removed. It is
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marked as “decayed”, however, by negating its status code. At any stage of the Markov-
chain evolution there is thus only one “current” copy of the top. After the shower, when
the final top decays, t→ bW+, also that copy receives a negative status code. When you
understand the basic principles, see if you can find several copies of the top quarks, and
check the status codes to figure out why each new copy has been added. Also note how
the mother/daughter indices tie together the various copies.

The event-record output (produced by the event.list(); method) from your example
program provides the main properties of each particles, by column:

• no, the index number of the particle (i above);

• id, the PDG particle identity code (method id()), explained below;

• name, a plaintext rendering of the particle name (method name()), within brackets
for initial or intermediate particles and without for final-state ones;

• status, the reason why a new particle was added to the event record (method
status()), explained below;

• mothers and daughters, documentation on the event history (methods mother1(),
mother2(), daughter1() and daughter2()); explained below;

• colours, the colour flow of the process (methods col() and acol()); explained
below;

• p x, p y, p z and e, the components of the momentum four-vector (px, py, pz, E), in
units of GeV with c = 1 (methods px(), py(), pz() and e());

• m, the mass, in units as above (method m()).

For a complete description of these and other particle properties (such as production and
decay vertices, rapidity, p⊥, etc), open the program’s online documentation in a browser
(see Section 2, point 6, above), scroll down to the “Study Output” section, and follow
the “Particle Properties” link in the left-hand-side menu. For brief summaries on the less
trivial of the ones above, read on.

2.1.1 Identity codes

To distinguish between different types of particles (e.g., electrons, muons, up quarks, down
quarks, etc), Pythia uses a numbering scheme standardized by the Particle Data Group
(PDG) (together with a few Pythia-specific extensions). A complete specification of the
PDG codes is found in the Review of Particle Physics [6]. An online listing is available
from

http://pdg.lbl.gov/2008/mcdata/mc particle id contents.html

A short summary of the most common id codes would be

1 d 11 e− 21 g 211 π+ 111 π0 213 ρ+ 2112 n
2 u 12 νe 22 γ 311 K0 221 η 313 K∗0 2212 p
3 s 13 µ− 23 Z0 321 K+ 331 η′ 323 K∗+ 3122 Λ0

4 c 14 νµ 24 W+ 411 D+ 130 K0
L 113 ρ0 3112 Σ−

5 b 15 τ− 25 H0 421 D0 310 K0
S 223 ω 3212 Σ0

6 t 16 ντ 431 D+
s 333 φ 3222 Σ+
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Antiparticles to the above, where existing as separate entities, are given with a negative
sign.
Note that simple meson and baryon codes are constructed from the constituent (anti)quark
codes, with a final spin-state-counting digit 2s + 1 (K0

L and K0
S being exceptions), and

with a set of further rules to make the codes unambiguous.

2.1.2 Status codes

When a new particle is added to the event record, it is assigned a positive status code
that describes why it has been added, as follows:

code range explanation
11 – 19 beam particles
21 – 29 particles of the hardest subprocess
31 – 39 particles of subsequent subprocesses in multiparton interactions
41 – 49 particles produced by initial-state-showers
51 – 59 particles produced by final-state-showers
61 – 69 particles produced by beam-remnant treatment
71 – 79 partons in preparation of hadronization process
81 – 89 primary hadrons produced by hadronization process
91 – 99 particles produced in decay process, or by Bose-Einstein effects

Whenever a particle is allowed to branch or decay further its status code is negated (but it
is never removed from the event record), such that only particles in the final state remain
with positive codes. The isFinal() method returns true/false for positive/negative
status codes.

Note: while the identity codes described in the preceding subsection are standardized by
the PDG and the same for all high-energy Monte Carlo event-generator codes, the status
codes here described are intrinsic to Pythia. Other generator codes (such as Herwig or
Sherpa) and/or other event-record standards (such as the HepMC one) will in general
have different status codes, with different meanings from the ones we use.

2.1.3 History information

The two mother and two daughter indices of each particle provide information on the
history relationship between the different entries in the event record. The detailed rules
depend on the particular physics step being described, as defined by the status code. As
an example, in a 2 → 2 process ab → cd, the locations of a and b would set the mothers
of c and d, with the reverse relationship for daughters. When the two mother or daughter
indices are not consecutive they define a range between the first and last entry, such as a
string system consisting of several partons fragment into several hadrons.

There are also several special cases. One such is when “the same” particle appears as
a second copy, e.g. because its momentum has been shifted by it taking a recoil in the
dipole picture of parton showers. Then the original has both daughter indices pointing
to the same particle, which in its turn has both mother pointers referring back to the
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original. Another special case is the description of ISR by backwards evolution, where the
mother is constructed at a later stage than the daughter, and therefore appears below in
the event listing.

If you get confused by the different special-case storage options, the two
pythia.event.motherList(i) and pythia.event.daughterList(i) methods are able
to return a vector of all mother or daughter indices of particle i.

2.1.4 Colour flow information

The colour flow information is based on the Les Houches Accord convention [7]. In it,
the number of colours is assumed infinite (called the planar or leading-colour limit), so
that each new colour line can be assigned a new separate colour. These colours are given
consecutive labels: 101, 102, 103, . . . . A gluon has both a colour and an anticolour label,
an (anti)quark only (anti)colour.

While colours are traced consistently through hard processes and parton showers, the
subsequent beam-remnant-handling step often involves a drastic change of colour labels.
Firstly, previously unrelated colours and anticolours taken from the beams may at this
stage be associated with each other, and be relabelled accordingly. Secondly, it appears
that the close space–time overlap of many colour fields leads to reconnections, i.e. a
swapping of colour labels, that tends to reduce the total length of field lines.

3 A first realistic analysis

We will now gradually expand the skeleton mymain program from above, towards what
would be needed for a more realistic analysis setup.

• Often, we wish to mix several processes together. To add the process qq → tt to
the above example, just include a second pythia.readString call

pythia.readString("Top:qqbar2ttbar = on");

• Now we wish to generate more than one event. To do this, introduce a loop around
pythia.next(), so the code now reads

for (int iEvent = 0; iEvent < 5; ++iEvent) {
pythia.next();

}
Hereafter, we will call this the event loop. The program will now generate 5 events;
each call to pythia.next() resets the event record and fills it with a new event. To
list more of the events, you also need to add

pythia.readString("Next:numberShowEvent = 5");

along with the other pythia.readString commands.

• To obtain statistics on the number of events generated of the different kinds, and
the estimated cross sections, add a

pythia.stat();

just before the end of the program.
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• During the run you may receive problem messages. These come in three kinds:

• a warning is a minor problem that is automatically fixed by the program, at
least approximately;

• an error is a bigger problem, that is normally still automatically fixed by the
program, by backing up and trying again;

• an abort is such a major problem that the current event could not be completed;
in such a rare case pythia.next() is false and the event should be skipped.

Thus the user need only be on the lookout for aborts. During event generation,
a problem message is printed only the first time it occurs. The above-mentioned
pythia.stat() will then tell you how many times each problem was encountered
over the entire run.

• Looking at the event listing for a few events at the beginning of each run is useful
to make sure you are generating the right kind of events, at the right energies, etc.
For real analyses, however, you need automated access to the event record. The
Pythia event record provides many utilities to make this as simple and efficient as
possible. To access all the particles in the event record, insert the following loop
after pythia.next() (but fully enclosed by the event loop)

for (int i = 0; i < pythia.event.size(); ++i) {
cout << "i = " << i

<< ", id = " << pythia.event[i].id() << endl;

}
which we will call the particle loop. Inside this loop, you can access the properties
of each particle pythia.event[i]. For instance, the method id() returns the PDG
identity code of a particle (see Section 2). The cout statement, therefore, will give
a list of the PDG code of every particle in the event record.

• As mentioned above, the event listing contains all partons and particles, traced
through a number of intermediate steps. Eventually, the top will decay (t→Wb),
and by implication it is the last copy of this top in the event record that gives the
“final” answer. You can obtain the location of this final top e.g. by a line just before
the particle loop

int iTop = 0;

and a line inside the particle loop
if (pythia.event[i].id() == 6) iTop = i;

The value of iTop will be set every time a top is found in the event record. When
the particle loop is complete, iTop will now point to the final top in the event
record (which can be accessed as pythia.event[iTop]).

• In addition to the particle properties in the event listing, there are also methods
that return many derived quantities for a particle, such as transverse momentum,
pythia.event[iTop].pT(), and pseudorapidity, pythia.event[iTop].eta(). Use
these methods to print out the values for the final top found above.

• We now want to generate more events, say 1000, to view the shape of these distri-
butions. Inside Pythia is a very simple histogramming class, that can be used for
rapid check/debug purposes. To book the histograms, insert before the event loop

Hist pT("top transverse momentum", 100, 0., 200.);
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Hist eta("top pseudorapidity", 100, -5., 5.);

where the last three arguments are the number of bins, the lower edge and the up-
per edge of the histogram, respectively. Now we want to fill the histograms in each
event, so before the end of the event loop insert

pT.fill( pythia.event[iTop].pT() );

eta.fill( pythia.event[iTop].eta() );

Finally, to write out the histograms, after the event loop we need a line like
cout << pT << eta;

This will append to the output some simple ASCII histograms. If you look in the
online HTML manual under “Study Output”, the “Histograms” page can tell you
about further methods to output the histograms as tables, for later plotting with
programs like Gnuplot or Root. If you have Root installed, there is even an
option for opening runtime displays for realtime histogram plotting, by using the
Vincia plugin, see section 5.

• As a final standalone exercise, consider plotting the charged multiplicity of events.
You then need to have a counter set to zero for each new event. Inside the particle
loop this counter should be incremented whenever the particle isCharged() and
isFinal(). For the histogram, note that it can be treacherous to have bin limits
at integers, where roundoff errors decide whichever way they go. In this particular
case only even numbers are possible, so 100 bins from −1 to 399 would still be
acceptable.

4 Input files

With the mymain.cc structure developed above it is necessary to recompile the main
program for each minor change, e.g. if you want to rerun with more statistics. This is
not time-consuming for a simple standalone run, but may become so for more realistic
applications. Therefore, parameters can be put in special input “card” files that are read
by the main program.

We will now create such a file, with the same settings used in the mymain example program.
Open a new file, mymain.cmnd, and input the following

! t tbar production at the LHC

Beams:idA = 2212 ! first incoming beam is a 2212, i.e. a proton.

Beams:idB = 2212 ! second beam is also a proton.

Beams:eCM = 7000. ! the cm energy of collisions.

Top:gg2ttbar = on ! switch on the process g g -> t tbar.

Top:qqbar2ttbar = on ! switch on the process q qbar -> t tbar.

The mymain.cmnd file can contain one command per line, of the type
variable = value

All variable names are case-insensitive (the mixing of cases has been chosen purely to
improve readability) and non-alphanumeric characters (such as !, # or $) will be inter-
preted as the start of a comment. All valid variables are listed in the online manual (see
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Section 2, point 6, above). Cut-and-paste of variable names can be used to avoid spelling
mistakes.

The final step is to modify our program to use this input file. The name of this input file
can be hardcoded in the main program, but for more flexibility, it can also be provided
as a command-line argument. To do this, replace the int main() { line by

int main(int argc, char* argv[]) {
and replace all pythia.readString(...) commands with the single command

pythia.readFile(argv[1]);

The executable mymain.exe is then run with a command line like
./mymain.exe mymain.cmnd > mymain.out

and should give the same output as before.

In addition to all the internal Pythia variables there exist a few defined in the database
but not actually used. These are intended to be useful in the main program, and thus
begin with Main:. The most basic of those is Main:numberOfEvents, which you can use
to specify how many events you want to generate. To make this have any effect, you need
to read it in the main program, after the pythia.readFile(...) command, by a line
like

int nEvent = pythia.mode("Main:numberOfEvents");

and set up the event loop like
for (int iEvent = 0; iEvent < nEvent; ++iEvent) {

You are now free to play with further options in the input file, such as:

• 6:m0 = 175.

change the top mass, which by default is 171 GeV.

• PartonLevel:FSR = off

switch off final-state radiation.

• PartonLevel:ISR = off

switch off initial-state radiation.

• PartonLevel:MPI = off

switch off multiparton interactions.

• Tune:pp = 3 (or other values between 1 and 7)
different combined tunes, in particular to radiation and multiparton interactions
parameters. In part this reflects that no generator is perfect, and also not all data
is perfect, so different emphasis will result in different optima. In addition, detailed
tuning of Pythia 8 is still in its infancy.

• Random:setSeed = on

Random:seed = 123456789

all runs by default use the same random-number sequence, for reproducibility, but
you can pick any number between 1 and 900,000,000 to obtain a unique sequence.

For instance, check the importance of FSR, ISR and MPI on the charged multiplicity of
events by switching off one component at a time.

The usage of further Main: variables is illustrated e.g. in main03.cc, and the possibility
to use command-line input files in main16.cc and main42.cc.
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The online manual also exists in an interactive variant, where you semi-automatically can
construct a file with all the command lines you wish to have. This requires that somebody
installs the pythia81xx/phpdoc directory in a webserver. If you lack a local installation
you can use the one at

http://home.thep.lu.se/∼torbjorn/php81xx/Welcome.php
This is not a commercial-quality product, however, and requires some user discipline. Full
instructions are provided on the “Save Settings” page.

5 Further studies

If you have time left, you should take the opportunity to try a few other processes or
options. Below are given some examples, but feel free to pick something else that you
would be more interested in.

• One popular misconception is that the energy and momentum of a B meson has to
be smaller than that of its mother b quark, and similarly for charm. The fallacy
is twofold. Firstly, if the b quark is surrounded by nearby colour-connected gluons,
the B meson may also pick up some of the momentum of these gluons. Secondly,
the concept of smaller momentum is not Lorentz-frame-independent: if the other
end of the b colour force field is a parton with a higher momentum (such as a beam
remnant) the “drag” of the hadronization process may imply an acceleration in the
lab frame (but a deceleration in the beam rest frame).
To study this, simulate b production, e.g. the process HardQCD:gg2bbbar. Identify
B/B∗ mesons that come directly from the hadronization, for simplicity those with
status code −83 or −84. In the former case the mother b quark is in the mother1()

position, in the latter in mother2() (study a few event listings to see how it works).
Plot the ratio of B to b energy to see what it looks like.

• One of the characteristics of multiparton-interactions (MPI) models is that they lead
to strong long-range correlations, as observed in data. That is, if many hadrons are
produced in one rapidity range of an event, then most likely this is an event where
many MPI’s occurred (and the impact parameter between the two colliding protons
was small), and then one may expect a larger activity also at other rapidities.
To study this, select two symmetrically located, one unit wide bins in rapidity
(or pseudorapidity), with a variable central separation ∆y: [∆y/2,∆y/2 + 1] and
[−∆y/2− 1,−∆y/2]. For each event you may find nF and nB, the charged mul-
tiplicity in the “forward” and “backward” rapidity bins. Suitable averages over a
sample of events then gives the forward–backward correlation coefficient

ρFB(∆y) =
〈nF nB〉 − 〈nF 〉〈nB〉√

(〈n2
F 〉 − 〈nF 〉2)(〈n2

B〉 − 〈nB〉2)
=
〈nF nB〉 − 〈nF 〉2

〈n2
F 〉 − 〈nF 〉2

,

where the last equality holds for symmetric distributions such as in pp and pp.
Compare how ρFB(∆y) changes for increasing ∆y = 0, 1, 2, 3, . . ., with and
without MPI switched on (PartonLevel:MPI = on/off) for minimum-bias events
(SoftQCD:minBias = on).
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• Higgs production can proceed through several different production processes. For
the Standard Model Higgs some process switches are:
HiggsSM:ffbar2H for ff → H0 (f generic fermion, here mainly bb→ H0);
HiggsSM:gg2H for gg→ H0;
HiggsSM:ffbar2HZ for ff → H0Z0;
HiggsSM:ffbar2HW for ff → H0W±;
HiggsSM:ff2Hff(t:ZZ) for ff → H0ff via Z0Z0 fusion;
HiggsSM:ff2Hff(t:WW) for ff → H0ff via W+W− fusion;
HiggsSM:all for all of the above (and some more).
Study the p⊥ and η spectrum of the Higgs in these processes, and compare.

• You can also vary the Higgs mass with a 25:m0 = ... and switch off FSR/ISR/MPI
as above for top.

• Z0 production to lowest order only involves one process, accessible with
WeakSingleBoson:ffbar2gmZ = on. The problem here is that the process is
ff → γ∗/Z0 with full γ∗/Z0 interference and so a signficiant enhancement at low
masses. The combined particle is always classified with code 23, however. So gener-
ate events and study the γ∗/Z0 mass and p⊥ distributions. Then restrict to a more
“Z0-like” mass range with PhaseSpace:mHatMin = 75. and PhaseSpace:mHatMax

= 120.

• Using your favourite jet cluster algorithm, study the number of jets found in asso-
ciation with the Z0 above. You can switch off Z0 decay with 23:mayDecay = no. If
you do not have a jet finder around, to begin with you can use the simple SlowJet

one that comes with Pythia, see the “Event Analysis” page in the online manual,
which offers a choice of the k⊥, Cambridge/Aachen and anti-k⊥ algorithms. Again
check the importance of FSR/ISR/MPI.

• In Section 2, we saw how to book and output simple ASCII histograms, and you
may also have experimented with writing them to files for later plotting. If you
have Root installed, there is even an option for opening runtime displays for real-
time histogram plotting, via the Vincia plugin. (Note for ASP 2012: the ROOT
installation on the ASP 2012 desktops does not appear to be compatible with this
functionality, but you may want to try it out on your laptops.) The VINCIA plug-in
also contains an alternative parton-shower formalism (which can be disabled, if you
just wish to use its runtime display facilities for vanilla Pythia). It can be obtained
from the web page:

http://projects.hepforge.org/vincia

Go to the web page, follow the instructions there to download and install the plu-
gin, and try out the vincia03-root example program included with that code.
If everything is set up correctly, including Root (you may have to edit the VIN-
CIA Makefile, under “Linking to ROOT”, in particular make sure the ROOTSYS,
ROOTINCDIR, and ROOTLIBDIR environment variables are set appropriately for
your ROOT installation), then you should be seeing runtime displays appearing
on your screen, which are updated in realtime as the program runs. The example
program and the (separate) Vincia online HTML documentation can point you to
how to adapt this functionality for your own purposes.
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[1] T. Sjöstrand, S. Mrenna and P. Skands, Comput. Phys. Comm. 178 (2008) 852
[arXiv:0710.3820]
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