TASI 2012

The Infrared

Confinement

Hadronization

Underlying Event & Soft QCD interactions

Disclaimer

Focus on ideas, make you think about the physics

P. Skands (CERN)

From Partons to Pions

Here's a fast parton

From Partons to Pions

Here's a fast parton

How about I just call it a hadron?

P. Skands

QCD

From Partons to Pions

Here's a fast parton

How about I just call it a hadron?

 \rightarrow "Local Parton-Hadron Duality"

Parton → Hadrons?

Parton Hadron Duality

Universal fragmentation of a parton into hadrons

*LPHD = Local Parton Hadron Duality

QCD

Parton → Hadrons?

Parton Hadron Duality

Universal fragmentation of a parton into hadrons

But ...

- The point of confinement is that partons are <u>colored</u>
- Hadronization = the process of color <u>neutralization</u>

I.e, the one question NOT addressed by LPHD or I.F.

→ Unphysical to think about independent fragmentation of individual partons

*LPHD = Local Parton Hadron Duality

QCD

Color Neutralization

A physical hadronization model

Should involve at least TWO partons, with opposite color charges (e.g., **R** and **anti-R**)

Strong "confining" field emerges between the two charges when their separation $> \sim 1 \text{ fm}$

Lattice QCD: Potential between a quark and an antiquark as function of distance, R

 \mathbf{V}

QCD

P. Skands

Lattice QCD: Potential between a quark and an antiquark as function of distance, R

 \mathbf{V}

Lattice QCD: Potential between a quark and an antiquark as function of distance, R

Lattice QCD: Potential between a quark and an antiquark as function of distance, R

Long Distances ~ Linear Confinement

QCD Lecture

Lattice QCD: Potential between a quark and an antiquark as function of distance, R

"Quenched" Lattice QCD K(R) 0.9linear par 0.8 total 0.7 Short Distances ~ pQCD 0.6 Coulomb part 0.5 0.4 ^D $V(R) = V_{p} + K R - e/R + f/R^{2}$ Partons 0.3 16 12 20 8 24R

Long Distances ~ Linear Confinement

 $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV}/\text{fm} \iff V(r) \approx \kappa r$

QCD

Lattice QCD: Potential between a quark and an antiquark as function of distance, R

"Quenched" Lattice QCD K(R) 0.9 linear par 0.8 1 10 - QU total 0.7 Short Distances ~ pQCD 0.6 Coulomb part 0.5 0.4 ^D $V(R) = V_p + K R - e/R + f/R^2$ Partons 0.3 12 16 20 8 24R

Long Distances ~ Linear Confinement

Hadrons

Question: What physical system has a linear potential?

 $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV}/\text{fm} \iff V(r) \approx \kappa r$

QCD

From Partons to Strings

Motivates a model:

- Let color field collapse into a (infinitely) narrow flux tube of uniform energy density $\kappa \sim 1$ GeV / fm
- → Relativistic I+I dimensional worldsheet string

QCD

QCD

Lecture

Hadronization Models

The problem:

Given a set of partons resolved at a scale of ~ I GeV (the perturbative cutoff), need a "mapping" from this set onto a set of on-shell colour-singlet (i.e., confined) hadronic states.

MC models do this in three steps

- Map partons onto continuum of excited hadronic states (called 'strings' or 'clusters')
- 2. Iteratively map strings/clusters onto **discrete set of primary hadrons** (string breaks / cluster splittings / cluster decays)
- 3. Sequential decays into secondary hadrons (e.g., $\rho > \pi \pi$, $\Lambda^0 > n \pi^0$, $\pi^0 > \gamma\gamma$, ...)

Distance Scales ~ 10⁻¹⁵ m = 1 fermi

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large-N limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

QCD

Lecture

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large-N limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

Illustrations from: P.Nason & P.S., PDG Review on *MC Event Generators*, 2012 QCD

Lecture

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large-N limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

Illustrations from: P.Nason & P.S., PDG Review on *MC Event Generators*, 2012 QCD

Lecture

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large-N limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

Illustrations from: P.Nason & P.S., PDG Review on *MC Event Generators*, 2012

P. Skands

From Partons to Strings

Illustrations by T. Sjöstrand

Map: • **Quarks** \rightarrow String Endpoints g (<u>**r**</u>b) • **Gluons** → Transverse snapshots of string position Excitations (kinks) • q (<u>r</u>) Strings stretched from q endpoint, via any number of gluons, to qbar endpoint व (<mark>b</mark>

QCD

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow planar approx pretty good

(LEP measurements in WW confirm this (at least to order $10\% \sim 1/N_c^2$))

Note: (much) more color getting kicked around in hadron collisions \rightarrow color reconnections important there? ...

For an entire Cascade

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow planar approx pretty good

(LEP measurements in WW confirm this (at least to order $10\% \sim 1/N_{c^2}$))

Note: (much) more color getting kicked around in hadron collisions \rightarrow color reconnections important there? ...

$$\mathcal{P} \propto \exp\left(-\frac{\pi m_{\perp q}^2}{\kappa}\right) = \exp\left(-\frac{\pi p_{\perp q}^2}{\kappa}\right) \exp\left(-\frac{\pi m_q^2}{\kappa}\right)$$

1) common Gaussian p_{\perp} spectrum 2) suppression of heavy quarks $u\overline{u} : d\overline{d} : s\overline{s} : c\overline{c} \approx 1 : 1 : 0.3 : 10^{-11}$ 3) diquark \sim antiquark \Rightarrow simple model for baryon production

> Lecture V

QCD

$$\mathcal{P} \propto \exp\left(-\frac{\pi m_{\perp q}^2}{\kappa}\right) = \exp\left(-\frac{\pi p_{\perp q}^2}{\kappa}\right) \exp\left(-\frac{\pi m_q^2}{\kappa}\right)$$

1) common Gaussian p_{\perp} spectrum 2) suppression of heavy quarks $u\overline{u} : d\overline{d} : s\overline{s} : c\overline{c} \approx 1 : 1 : 0.3 : 10^{-11}$ 3) diquark \sim antiquark \Rightarrow simple model for baryon production

Also depends on:

Spins, hadron multiplets, hadronic wave functions, phase space, ...

 \rightarrow (much) more complicated \rightarrow many parameters

 \rightarrow Not calulable, must be constrained by data \rightarrow 'tuning'

QCD

Fragmentation Function

Fragmentation Function

QCD

Left-Right Symmetry

Causality → Left-Right Symmetry

- → Constrains form of fragmentation function!
- → Lund Symmetric Fragmentation Function

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(-\frac{b\left(m_h^2 + p_{\perp h}^2\right)}{z}\right)$$

Lecture V

QCD

Iterative String Breaks

Causality \rightarrow May iterate from outside-in

QCD

Alternative: The Cluster Model

"Preconfinement"

Lecture

QCD

 10^{2}

 10^{3}

Alternative: The Cluster Model

P. Skands

Alternative: The Cluster Model

Strings and Clusters

Small strings \rightarrow clusters. Large clusters \rightarrow strings

QCD

String Hadronization

Main IR Parameters

Longitudinal FF = f(z)

pT in string breaks

Lund Symmetric Fragmentation Function

The a and b parameters

Scale of string breaking process

<pt> in string breaks

Meson Multiplets

Strangeness suppression, Vector/Pseudoscalar, η , η' , ...

Baryon Multiplets

Baryons

Mesons

Diquarks, Decuplet vs Octet, popcorn, junctions, ... ?

QCD
Fragmentation Tuning

(example)

V

P. Skands

Hadron Collisions

FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

Hadron Collisions

Do not be scared of the failure of physical models Usually points to more interesting physics

FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

Hadron Collisions

FIG. 12. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\tilde{O}_0(b)$].

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

Soft-inclusive QCD

What is Underlying Event ?

Useful variable in hadron collisions: **Rapidity**

Designed to be additive under Lorentz
Boosts along beam (z) direction
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

$$y \to -\infty$$
 for $p_z \to -E$ $y \to 0$ for $p_z \to 0$ $y \to \infty$ for $p_z \to E$

Illustrations by T. Sjöstrand

What is Underlying Event ?

Useful variable in hadron collisions: **Rapidity**

Designed to be additive under Lorentz Boosts along beam (z) direction

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

Homework: Check how y transforms under Lorentz boost along z

$$y \to -\infty$$
 for $p_z \to -E$ $y \to 0$ for $p_z \to 0$

 $y \to \infty$ for $p_z \to E$

Illustrations by T. Sjöstrand

QCD

Twisted Stuff

Factorization: Subdivide Calculation

Multiple Parton Interactions go beyond existing theorems

- → perturbative short-distance physics in Underlying Event
- \rightarrow Need to generalize factorization to MPI

QCD

Twisted Stuff

Factorization: Subdivide Calculation

Multiple Parton Interactions go beyond existing theorems

- → perturbative short-distance physics in Underlying Event
- \rightarrow Need to generalize factorization to MPI

P. Skands

QCD

Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Lesson from bremsstrahlung in pQCD: divergences → fixed-order breaks down Perturbation theory still ok, with resummation <u>(unitarity)</u>

> → Resum dijets? Yes → MPI!

Multiple Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Lesson from bremsstrahlung in pQCD: divergences → fixed-order breaks down Perturbation theory still ok, with resummation <u>(unitarity)</u>

> → Resum dijets? Yes → MPI!

How many?

Naively $\langle n_{2\to 2}(p_{\perp \min}) \rangle = \frac{\sigma_{2\to 2}(p_{\perp \min})}{\sigma_{tot}}$ Interactions independent (naive factorization) \rightarrow Poisson

$$\mathcal{P}_n = rac{\langle n
angle^n}{n!} e^{-\langle n
angle}$$

Real Life

Momentum conservation suppresses high-n tail + physical correlations → not simple product

QCD

1: A Simple Model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

$$\sigma_{2\to 2}(p_{\perp \min}) = \langle n \rangle(p_{\perp \min}) \sigma_{\text{tot}}$$

Parton-Parton Cross Section

Hadron-Hadron Cross Section

I. Choose *p*_{*T*min} cutoff

= main tuning parameter

- 2. Interpret $< n > (p_{T\min})$ as mean of Poisson distribution Equivalent to assuming all parton-parton interactions equivalent and independent ~ each take an instantaneous "snapshot" of the proton
- 3. Generate *n* parton-parton interactions (pQCD $2\rightarrow 2$) Veto if total beam momentum exceeded \rightarrow overall (E,p) cons
- 4. Add impact-parameter dependence $\rightarrow \langle n \rangle = \langle n \rangle(b)$ Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : f(x,b) = f(x)g(b) b distribution \propto EM form factor \rightarrow JIMMY model Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637 Constant of proportionality = second main tuning parameter
- 5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_T < p_{T\min}$ and require $\sigma_{soft} + \sigma_{hard} = \sigma_{tot}$ \rightarrow Herwig++ model Bähr et al, arXiv:0905.4671

(2: Interleaved Evolution)

Sjöstrand, P.S., JHEP 0403 (2004) 053; EPJ C39 (2005) 129

Add exclusivity progressively by evolving everything downwards. p_\perp $\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} =$ $p_{\perp \max}$ p_{\perp}^2 $\left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\mathrm{I}}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\mathrm{I}}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{JI}}}{\mathrm{d}p_{\mathrm{I}}}\right) \times$ Fixed order (B)SM evolution $2 \rightarrow 2$ $p_{\perp 1}$ matrix elements Parton Showers $\exp\left(-\int_{p_{\perp}}^{p_{\perp}i-1}\left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p'_{\perp}}+\sum\frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p'_{\perp}}+\sum\frac{\mathrm{d}\mathcal{P}_{\mathrm{JI}}}{\mathrm{d}p'_{\perp}}\right)\mathrm{d}p'_{\perp}\right)$ ISR (matched to 00000 $p_{\perp 1}$ further Matrix interleaved Elements) mult. int. → Underlying Event multiparton ISR (note: interactions correllated in colour: 00000 PDFs derived from sum rules hadronization not independent) interleaved 00000 mult. int. \sim "Finegraining" **ISR** 00000 00000 00000 perturbative "intertwining"? interleaved \rightarrow correlations between - - - - - - -Intertwined? mult int. $p_{\perp 4}$ all perturbative activity ISR 00000 Beam remnants at successively smaller scales Fermi motion / $p_{\perp \min}$ primordial k_T int. number 2 3

Color Space in hadron collisions

Color Connections

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions <u>crucially</u> depend on color space

Different models

Color Connections

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions <u>crucially</u> depend on color space

Different models

Color Connections

Better theory models needed

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)

Rapidity

Better theory models needed

Do the systems really form and hadronize independently?

Multiplicity × NMPI

QCD

Main IR Parameters

Number of MPI

Pedestal Rise

Strings per Interaction

QCD

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow size of overall activity

Pedestal Rise

Strings per Interaction

QCD

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow size of overall activity

Pedestal Rise

Proton transverse mass distribution \rightarrow **difference betwen central (active) vs peripheral (less active) collisions**

Strings per Interaction

QCD Lecture

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow size of overall activity

Pedestal Rise

Proton transverse mass distribution \rightarrow **difference betwen central (active) vs peripheral (less active) collisions**

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction

QCD

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow size of overall activity

Pedestal Rise

Proton transverse mass distribution \rightarrow **difference betwen central (active) vs peripheral (less active) collisions**

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction

QCD

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Sum(pT) Density (TRANS)

Lecture V

QCD

"Toward"

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections

Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

Lecture

QCD

"Toward"

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe

Large Non-factorizable Corrections

Prediction off by < 10%

QCD

"Toward"

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe

Large Non-factorizable Corrections

Prediction off by < 10%

R. Field: "See, I told you!"

"Toward"

"Away"

38

QCD

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe

Large Non-factorizable Corrections

Prediction off by < 10%

Y. Gehrstein: "they have to fudge it again"

R. Field: "See, I told you!"

Lecture

"Toward"

LHC from 900 to 7000 GeV - ATLAS

R. Field: "See, I told you!"

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections

Prediction off by $\approx 10\%$

Truth is in the eye of the beholder:

"Toward"

"Away"

Sum(pT) Density (TRANS)

(more) Infrared Safe

Large Non-factorizable Corrections

Prediction off by < 10%

QCD

Lecture

Y. Gehrstein: "they have to fudge it again"

P. Skands

Summary 1/2

Fixed Order pQCD: Good for jets ~ hard scale

- Beware: hierarchies / multi-scale problems
- → Scale choices become more important and more complicated
- → Enhancements from soft/collinear (conformal) singularities can invalidate fixed-order truncation

Parton Showers: Good for jets << hard scale

- Bootstrapped approximation to infinite-order perturbation theory (resummation)
- Exact in soft/collinear limits. Unpredictive for hard radiation
- Coherence → Angular Ordering or Dipole-Antenna showers

QCD

Summary 2/2

Matching

At tree level (CKKW, MLM) \rightarrow LO for multiple hard jets

At NLO (MC@NLO, POWHEG) → NLO precision for Born

Substantial modeling uncertainties for soft physics. But fortunately ... it's soft.

Hadronization: based on tracing color flow through event. String model based on linear confinement, causality, and tunneling. Cluster model based on preconfinement and phase space.

Underlying Event: based on multiple parton interactions and impact-parameter dependence.

QCD

Thank you

Additional Slides

Large System

Illustrations by T. Sjöstrand

V

Large System

Illustrations by T. Sjöstrand

String breaks causally disconnected

- → can proceed in arbitrary order (left-right, right-left, in-out, ...)
 - \rightarrow constrains possible form of fragmentation function
 - → Justifies iterative ansatz (useful for MC implementation)

QCD
Multi-Parton PDFs

How are the initiators and remnant partons correllated?

- in impact parameter?
- in flavour?
- in x (longitudinal momentum)?
- in k_T (transverse momentum)?
- in colour (→ string topologies!)
- What does the beam remnant look like?
- (How) are the showers correlated / intertwined?

QCD

QCD

Lecture V

Lecture V

QCD

QCD

Lecture

QCD

Lecture

QCD

Lecture

"Intuitive picture"

