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The Problem
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Lecture 2 : Matrix elements are correct

When all jets are hard and there are no hierarchies
(single-scale problem = small corner of phase space, but an important one!)

But they are unpredictive for strongly ordered emissions

Lecture 3 : Parton Showers are correct

When all emissions are (successively) strongly ordered 
(= dominant QCD structures)

But they are unpredictive for hard jets
Often too soft (but not guaranteed! Can also err by being too hard!)

ME-PS matching → ONE calculation to rule them all
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Example:              .
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Shower Approximation
to Born + 1
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Example:              .
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Born + 1 @ LO 
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Example:              .
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Total Overkill to add these two.  All I really need is just that +2 … 

2

+ …
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Born × Shower X+1 @ LO
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

X+1(2) …

X+1(1) X+2(1) X+3(1) …

X+1(0) X+2(0) X+3(0) …

(see lecture 3) (with pT cutoff, see lecture 2)
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

X+1(2) …

X+1(1) X+2(1) X+3(1) …

X+1(0) X+2(0) X+3(0) …

Adding Calculations

(see lecture 3)

…
Shower approximation above pT cut
& nothing below

(with pT cutoff, see lecture 2)
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Born × Shower + (X+1) × shower
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…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Double Counting of 
terms present in 
both expansions

Worse than useless

…
Double counting above pT cut
& shower approximation below
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► A (Complete Idiot’s) Solution – Combine 
1. [X]ME + showering 
2. [X + 1 jet]ME + showering 

3. … 

► Doesn’t work 
•  [X] + shower is inclusive 

•  [X+1] + shower is also inclusive 

≠ 

Run generator for X (+ shower) 

Run generator for X+1 (+ shower) 

Run generator for … (+ shower) 

Combine everything into one sample 

What you 
get 

What you 
want 

Overlapping “bins” One sample 
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Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, …)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, …)

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

Cures
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Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, …)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, …)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

Cures
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Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, …)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, …)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

+ WORK IN PROGRESS … 

NLO + multileg tree-level matrix elements

NLO multileg matching

Matching at NNLO

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …
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+1(1)

X
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X
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Born
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X
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X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Cures

9
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PHASE-SPACE SLICING (a.k.a. CKKW, MLM, …)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, …)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

+ WORK IN PROGRESS … 

NLO + multileg tree-level matrix elements

NLO multileg matching

Matching at NNLO

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born
X

+1(0)
X

+2(0)
X

+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Cures
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Phase-Space Slicing
Matching to Tree-Level 

Matrix Elements
A.K.A. CKKW, CKKW-L, MLM
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X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born X
+1(0)

X
+2(0)

X
+3(0) …
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Phase Space Slicing 
(with “matching scale”)

Born × Shower

+ shower veto above pT

X+1 @ LO × Shower

with 1 jet above pT
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

X+1(2) …

X+1(1) X+2(1) X+3(1) …

X+1(0) X+2(0) X+3(0) …
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Phase Space Slicing 
(with “matching scale”)

Born × Shower     +

+ shower veto above pT

X+1 @ LO × Shower

with 1 jet above pT
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…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

…
Fixed-Order ME above pT cut
& Shower Approximation below

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X+1 now correct in 
both soft and hard 

limits
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Multi-Leg Slicing
(a.k.a. CKKW or MLM matching)

Keep going

Veto all shower emissions above “matching scale”
Except for the highest-multiplicity matrix element (not competing with anyone) 

13

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Multileg 
Tree-level 
matching:

Precision:
LO: when all jets hard

Still LL: for soft emissions

CKKW: Catani, Krauss, Kuhn, Webber, JHEP 0111:063,2001.

MLM: Michelangelo L Mangano
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W + Jets

Number of jets in 
pp→W+X at the LHC

From 0 (W inclusive) to 
W+3 jets

PYTHIA includes 
matching up to W+1 jet 
+ shower

With ALPGEN, also the 
LO matrix elements for 
2 and 3 jets are included

But Normalization still 
only LO

mcplots.cern.ch

W
ith Matching

W
ithout Matching

RATIO

ETj > 20 GeV
|ηj| < 2.8

Number of Jets

W+Jets
LHC 7 TeV
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Classic Example
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W + Jets

Number of jets in 
pp→W+X at the LHC

From 0 (W inclusive) to 
W+3 jets

PYTHIA includes 
matching up to W+1 jet 
+ shower

With ALPGEN, also the 
LO matrix elements for 
2 and 3 jets are included

But Normalization still 
only LO

mcplots.cern.ch

W
ith Matching

W
ithout Matching

RATIO

ETj > 20 GeV
|ηj| < 2.8

Number of Jets

W+Jets
LHC 7 TeV
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Slicing: Some Subtleties

Choice of slicing scale (=matching scale)

Fixed order must still be reliable when regulated with 
this scale 

→ matching scale should never be chosen more than ~ 
one order of magnitude below hard scale.

Precision still “only” Leading Order

Choice of Renormalization Scale

We already saw this can be very important (and tricky) 
in multi-scale problems. 

Caution advised (see also supplementary slides & lecture notes)

15
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Choice of Matching Scale
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→  A scale of 20 GeV for a W boson 
becomes 40 GeV for something weighing 
2MW, etc … (+ adjust for CA/CF if g-initiated)

→ The matching scale should be written as 
a ratio (Bjorken scaling)
Using a too low matching scale → 
everything just becomes highest ME

Caveat emptor: showers generally do not 
include helicity correlations

0

25

50

75

100

Born (exc) + 1 + 2 (inc)

Reminder: in perturbative 
region, QCD is approximately 

scale invariant

Low Matching Scale
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1

10

100

1000

3 4 5 6

Matched Number of Legs

1

10

100

1000

10000

3 4 5 6

Matched Number of Legs

Initialization Time 
(seconds)

Time to Generate 1000 Z→qq showers 
(seconds)

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 
gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

SHERPA (CKKW)

From minutes to hours
SHERPA (CKKW)

Here’s what it costs



Subtraction
Matching to Born+NLO 

Matrix Elements
A.K.A. MC@NLO, POWHEG, VINCIA[incl X+n @ LO]

18

X(2) X
+1(2) …

X(1) X
+1(1)

X
+2(1)

X
+3(1) …

Born X
+1(0)

X
+2(0)

X
+3(0) …



QCD

P. Skands

Lecture
IV

X @ LO + Shower

X @ NLO

Showers vs NLO

19

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z � 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

Z � 2 1-loop:

qk

qi

qk

gik
a

qi

qk

qk

16

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

+ +

22

+ -

Unitarity
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X @ LO + Shower

X @ NLO

Showers vs NLO

19

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z � 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

Z � 2 1-loop:

qk

qi

qk

gik
a

qi

qk

qk

16

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

+ +

22

+ -

Tree-
Level

Matching

Loop-
Level

Matching

Unitarity
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MC@NLO : Subtraction

LO × Shower NLO

20

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …
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MC@NLO : Subtraction

Born × Shower NLO - ShowerNLO

21

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation … Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Expand shower approximation to 
NLO analytically, then subtract:
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MC@NLO : Subtraction

Born × Shower (NLO - ShowerNLO) × 
Shower

22

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(1) X(1) …

X(1) X(1) X(1) X(1) …

Born X+1(0) X(1) X(1) …

… Subleading corrections generated by 
shower off subtracted ME 



QCD

P. Skands

Lecture
IV

MC@NLO : Subtraction
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Combine → MC@NLO

Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been almost fully automated in aMC@NLO

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

NLO: for X inclusive
LO for X+1

LL: for everything else

Note 1: NOT NLO for X+1

Note 2: Multijet tree-level matching 
still superior for X+2

w < 0 are a problem because they kill efficiency:  
E.g, 1000 positive-weight - 999 negative-weight → statistical precision of 1 event, for 2000 generated

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Frixione, Webber, JHEP 0206 (2002) 029
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Born × Shower

Born + 1 @ LO 

1

POWHEG/PYTHIA/VINCIA

24
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
2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

+ 2

◆�
2

+ …



QCD

P. Skands

Lecture
IV

Born × Shower

Born + 1 @ LO 

1

POWHEG/PYTHIA/VINCIA

24

2

+
|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


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+
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✓
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|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
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+
sjk
sij

+ 2

◆�

→ Use freedom to choose finite terms
Use process-dependent radiation functions → absorb real correction

2

+ …
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1

POWHEG/PYTHIA/VINCIA

25

2

+
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
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✓
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+
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◆�
Bengtsson, Sjöstrand, PLB 185 (1987) 435
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Born × First-Order Corrected Shower

1

POWHEG/PYTHIA/VINCIA

25
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Bengtsson, Sjöstrand, PLB 185 (1987) 435
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Born × First-Order Corrected Shower

Born + 1 @ LO 

1

POWHEG/PYTHIA/VINCIA

25
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✓
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
2sik
sijsjk

+
1

sIK

✓
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◆�
Bengtsson, Sjöstrand, PLB 185 (1987) 435
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Born × First-Order Corrected Shower

Born + 1 @ LO 

1

POWHEG/PYTHIA/VINCIA

25

2

+
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
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✓
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→ Use freedom to choose finite terms
Use process-dependent radiation functions → absorb real correction
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+ …
|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF


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Bengtsson, Sjöstrand, PLB 185 (1987) 435
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Combine w subtracted NLO → POWHEG

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

Use exact (process-dependent) splitting 
function for first splitting(s) 

Nason, JHEP 0411 (2004) 040
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Combine w subtracted NLO → POWHEG

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

… Fixed-Order ME minus Shower 
Approximation (usually positive) 

Use exact (process-dependent) splitting 
function for first splitting(s) 

Nason, JHEP 0411 (2004) 040
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Correct normalization for inclusive sample

Transverse Momentum of Z Boson

Tevatron
Drell-Yan

NLO normalization

LO normalization

But multi-jet rates still problematic
(still rely on shower)

Number of Jets

Still craps out for ≥ 2 jets
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Tree-level matching (slicing: CKKW, MLM)

Good for generating Born + several hard jets + shower

But normalization remains LO

NLO matching (MC@NLO or POWHEG)

Good for generating NLO Born + shower 

But only has LO precision for Born + 1 jet

Remains pure shower for Born + more jets

ME-PS matching → ONE calculation to rule them 
all? Things got better, but still have to choose :(
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When you run out of LO amplitudes, use pure shower
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The Best of Both?

Ideal:

Generate entire perturbative series

Use all available NLO amplitudes

When you run out of NLO amplitudes, use LO ones

When you run out of LO amplitudes, use pure shower

Yes!

Use parton shower algorithm as phase-space generator
Knows about singular structure of QCD, so gets dominant approximately right

Use exact amplitudes as radiation kernels
Until you run out of amplitudes

29

Giele, Kosower, PS, PRD 84 (2011) 054003
Lopez-Villarejo, PS, JHEP 1111 (2011) 150
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The VINCIA Code PYTHIA 8

+

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 &  PRD84(2011)054003
+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo 

PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 & CPC 178 (2008) 852

*)pQCD : perturbative QCD

Note: other teams working on alternative strategies
Perturbation theory is solvable → expect improvements

Start at Born level
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Perturbation theory is solvable → expect improvements

Start at Born level
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Perturbation theory is solvable → expect improvements

Start at Born level
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Note: other teams working on alternative strategies
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Start at Born level
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Cutting Edge: 
Embedding virtual amplitudes
= Next Perturbative Order
→ Precision Monte Carlos

PYTHIA 8

+

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 &  PRD84(2011)054003
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Efficient Matching with Sector Showers

J. Lopez-Villarejo & PS : JHEP 1111 (2011) 150 
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Matched Number of Legs

Initialization Time 
(seconds)

Time to Generate 1000 Z→qq showers 
(seconds)

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 
gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

Markovian (VINCIA)
Constant of order milliseconds

Traditional Method (CKKW)

~ Two orders of 

magnitudeFrom minutes to hours
Traditional Method (CKKW)

Markovian (VINCIA)

(Why I believe Markov + unitarity is the 
method of choice for complex problems)

(with helicity-dependence?)

http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
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assume AlpGen standalone! (no showering or 
matching!) - very different from Alp+Py/Hw

 MadGraph + Hw/Py
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CKKW-slicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

MC@NLO

NLO with subtraction, ~10% w<0

+ Herwig showers

POWHEG

NLO with unitarity; 0% w<0

+ “truncated” showers + HW or PY
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32

Hw/Py standalone
1st order matching for many 
processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers 
NOTE: If you just write “AlpGen” on a plot, we 
assume AlpGen standalone! (no showering or 
matching!) - very different from Alp+Py/Hw

 MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Sherpa

CKKW-slicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

MC@NLO

NLO with subtraction, ~10% w<0

+ Herwig showers

POWHEG

NLO with unitarity; 0% w<0

+ “truncated” showers + HW or PY

VINCIA + Py

NLO + multileg with unitarity

+ dipole-antenna showers

(Still only for Final State)
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Shower off X 
already contains LL 
part of all X+n

Adding back full ME 
for X+n would be 
overkill

• Solution 1: “Slicing” (most widespread)
HERWIG: Seymour, CPC 90 (1995) 95
ALPGEN, MADGRAPH: MLM
SHERPA: CKKW, JHEP 0111 (2001) 063
ARIADNE: Lönnblad, JHEP 0205 (2002) 046

Good for generating Born + several hard jets + shower
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Shower off X 
already contains LL 
part of all X+n

Adding back full ME 
for X+n would be 
overkill

• Solution 1: “Slicing” (most widespread)

MULTILEG: 
Only CKKW and MLM

Add event samples. Use ME above ptmatch and PS below it

wX        = |MX|2                     + Shower × Veto above pTmatch

wX+m<n = |MX+1|2 × ∆X+1      + Shower × Veto above pTmatch

wX+n     = |MX+n|2 × ∆X+n      + Shower 

HERWIG: for X+1 @ LO (Used to populate dead zone of angular-ordered shower)

CKKW & MLM : for all X+n @ LO (with n up to 3-4)
SHERPA (CKKW), ALPGEN (MLM + HW/PY), MADGRAPH (MLM + HW/PY), 

PYTHIA8 (CKKW-L from LHE files),  … 

HERWIG: Seymour, CPC 90 (1995) 95
ALPGEN, MADGRAPH: MLM
SHERPA: CKKW, JHEP 0111 (2001) 063
ARIADNE: Lönnblad, JHEP 0205 (2002) 046

Good for generating Born + several hard jets + shower
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Shower off X 
already contains LL 
part of all X+n

Adding back full ME 
for X+n would be 
overkill

• Solution 2: “Subtraction” (for NLO)
Frixione-Webber (MC@NLO), JHEP 0206 (2002) 029

+ many more recent ...

Good for generating NLO Born + shower 
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Shower off X 
already contains LL 
part of all X+n

Adding back full ME 
for X+n would be 
overkill

• Solution 2: “Subtraction” (for NLO)

Add event samples, with modified weights

wX    = |MX|2 ( 1 + (NLO - Shower{wX}) )             + Shower

wX+1 = |MX+1|2 – Shower{wX}                                + Shower

MC@NLO: for X+1 @ LO and X @ NLO (note: correction can be negative)

aMC@NLO: for X+1 @ LO and X @ NLO (note: correction can be negative)

Frixione-Webber (MC@NLO), JHEP 0206 (2002) 029
+ many more recent ...

Good for generating NLO Born + shower 



QCD

P. Skands

Lecture
IV

Matching: Summary
Shower off X 
already contains LL 
part of all X+n

Adding back full ME 
for X+n would be 
overkill

35

• Solution 3: “Unitarity” Bengtsson-Sjöstrand (Pythia), PLB 185 (1987) 435 + more
Bauer-Tackmann-Thaler (GenEva), JHEP 0812 (2008) 011

Giele-Kosower-Skands (Vincia), PRD84 (2011) 054003
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Shower off X 
already contains LL 
part of all X+n

Adding back full ME 
for X+n would be 
overkill

35

• Solution 3: “Unitarity” 

One event sample

wX    = |MX|2                                                           + Shower

Make a “course correction” to the shower at each order

RX+1 = |MX+1|2/Shower{wX}                                   + Shower

RX+n = |MX+n|2/Shower{wX+n-1}                             + Shower

PYTHIA: for X+1 @ LO (for color-singlet production and ~ all SM and BSM decay processes)

POWHEG: for X+1 @ LO and X @ NLO (note: positive weights)

VINCIA: for all X+n @ LO and X @ NLO (only worked out for decay processes so far)

Only VINCIA

POWHEG Box
HERWIG++

…

Bengtsson-Sjöstrand (Pythia), PLB 185 (1987) 435 + more
Bauer-Tackmann-Thaler (GenEva), JHEP 0812 (2008) 011

Giele-Kosower-Skands (Vincia), PRD84 (2011) 054003
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(used in Phase Space Slicing, a.k.a. CKKW or MLM matching)
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CKKW and CKKW-L MLM

1.Generate one ME sample for each of σn(pTcut) (using large, fixed αs0)

2.Use a jet algorithm (e.g., kT) to determine an approximate shower history for 
each ME event

3.Construct the would-be shower αs factor and reweight

Common (at ME level):

wn = Prod[αs(kTi)]/αs0n

→ “Renormalization-improved” ME weights

1.Apply Sudakov ∆(tstart,tend) for each 
reconstructed internal line (NLL for 
CCKW, trial-shower for CKKW-L)

2.Accept/Reject: wn ×= Prod[∆i]
3.Do parton shower, vetoing any 

emissions above cutoff

1.Do normal parton showers
2.Cluster showered event (cone)
3.Match ME partons to jets
4. If (all partons matched && npartons == 

njets) Accept : Reject;
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ME

pTmin
IR Cutoff on ME
~ Matching Scale

Qmax
Starting scale

of parton shower

Clean Slicing: Shower Starts at ME cutoff scale (=matching scale)

Be safe: start at s 
and veto shower 
emissions above pTmin

But ME cut not necessarily = shower evolution variable (even if shower ordered in pT)
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ME

pTmin
IR Cutoff on ME
~ Matching Scale

Qmax
Starting scale

of parton shower

Clean Slicing: Shower Starts at ME cutoff scale (=matching scale)

Be safe: start at s 
and veto shower 
emissions above pTmin

Shower matching to MEs: POWHEG
Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP

for showers, so “trivial” to interface any external program, including POWHEG.
Problem: for ISR

p2
⊥ = p2

⊥evol −
p4
⊥evol

p2
⊥evol,max

i.e. p⊥ decreases for θ∗ > 90◦ but p⊥evol monotonously increasing.
Solution: run “power” shower but kill emissions above the hardest one,
by POWHEG’s definition.
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Available for ISR-dominated, coming for QCD jets with FSR issues.

Example: PYTHIA uses pTevol ~ lightcone pT

p1 + p2

p1

p2

p⊥1,2

p⊥1,2
θ12

(a)

p1 + p2

p1

p2

p⊥1,2

p⊥1,2 θ12

(b)

Figure 3: (a) Schematic figure of the clustering of two particles. (b) A topology with a
large θ12 but a small p⊥1,2.

and p+
c = (1 − z)p+

a , p− conservation then gives

m2
a =

m2
b + p2

⊥

z
+

m2
c + p2

⊥

1 − z
(8)

or equivalently
p2
⊥ = z(1 − z)m2

a − (1 − z)m2
b − zm2

c = p2
⊥LC . (9)

For a timelike branching Q2 = m2
a and mb = mc = 0, so then p2

⊥LC = z(1 − z)Q2. For a
spacelike branching Q2 = −m2

b and ma = mc = 0, so instead p2
⊥LC = (1 − z)Q2. We use

these relations to define abstract evolution variables p2
⊥evol = z(1− z)Q2 or = (1− z)Q2, in

which to order the sequence of shower emissions.
However, this is not the z definition we will use to construct the kinematics of the

branchings. For this, we interpret z to give the energy sharing between the daughters, in
the rest frame of the radiator+recoiler system, Eb = zEa and Ec = (1− z)Ea. The latter z
interpretation gives nice Lorentz invariance properties — energies in this frame are easily
related to invariant masses, 2Ei/mijk = 1−m2

jk/m
2
ijk for the ijk three-parton configuration

after the radiation — but gives more cumbersome kinematics relations, specifically for p⊥.
This is the reason we use the lightcone relations to define the evolution variable while we
use the energy definition of z to construct the actual kinematics of the branchings.

The deliberate choice of maintaining this dichotomy can be better understood by ex-
amining a few different p⊥ definitions in common use, in particular those in clustering
algorithms. To this end consider first the situation depicted in Fig. 3a: With the two par-
ticles massless, so that E1 = |p1| and E2 = |p2|, the momentum transverse to the vector
sum p1 + p2, which would correspond to the momentum of an imagined mother, is

p⊥ =
|p1 × p2|
|p1 + p2|

=
E1E2 sin θ12

√

E2
1 + E2

2 + 2E1E2 cos θ12

= p⊥1,2 . (10)

There is one troubling feature of this p⊥1,2: not only does it vanish when the opening angle
θ12 goes to zero, but it also vanishes for θ12 → π (unless E1 ≡ E2). Physically it is clear what
is happening in this limit: the parton with larger energy is going along the p1 +p2 direction
and the one with smaller energy is just opposite to it, Fig. 3b. In a clustering algorithm,
where the idea is to combine ‘nearby’ particles, a measure with such a behaviour clearly is
undesirable. Even when the starting point would be to have a p⊥-related measure for small
θ12, we would prefer to have this measure increase monotonically for increasing θ12, given
fix E1 and E2, and behave a bit more like the invariant mass at large angles. Therefore, in

8

T. Sjöstrand & PS, EPJC39 (2005) 129

But ME cut not necessarily = shower evolution variable (even if shower ordered in pT)
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ME

pTmin
IR Cutoff on ME
~ Matching Scale

Qmax
Starting scale

of parton shower

Clean Slicing: Shower Starts at ME cutoff scale (=matching scale)

Be safe: start at s 
and veto shower 
emissions above pTmin

Shower matching to MEs: POWHEG
Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP

for showers, so “trivial” to interface any external program, including POWHEG.
Problem: for ISR

p2
⊥ = p2

⊥evol −
p4
⊥evol

p2
⊥evol,max

i.e. p⊥ decreases for θ∗ > 90◦ but p⊥evol monotonously increasing.
Solution: run “power” shower but kill emissions above the hardest one,
by POWHEG’s definition.
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Available for ISR-dominated, coming for QCD jets with FSR issues.

Example: PYTHIA uses pTevol ~ lightcone pT
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Figure 3: (a) Schematic figure of the clustering of two particles. (b) A topology with a
large θ12 but a small p⊥1,2.

and p+
c = (1 − z)p+

a , p− conservation then gives

m2
a =

m2
b + p2

⊥

z
+

m2
c + p2

⊥

1 − z
(8)

or equivalently
p2
⊥ = z(1 − z)m2

a − (1 − z)m2
b − zm2

c = p2
⊥LC . (9)

For a timelike branching Q2 = m2
a and mb = mc = 0, so then p2

⊥LC = z(1 − z)Q2. For a
spacelike branching Q2 = −m2

b and ma = mc = 0, so instead p2
⊥LC = (1 − z)Q2. We use

these relations to define abstract evolution variables p2
⊥evol = z(1− z)Q2 or = (1− z)Q2, in

which to order the sequence of shower emissions.
However, this is not the z definition we will use to construct the kinematics of the

branchings. For this, we interpret z to give the energy sharing between the daughters, in
the rest frame of the radiator+recoiler system, Eb = zEa and Ec = (1− z)Ea. The latter z
interpretation gives nice Lorentz invariance properties — energies in this frame are easily
related to invariant masses, 2Ei/mijk = 1−m2

jk/m
2
ijk for the ijk three-parton configuration

after the radiation — but gives more cumbersome kinematics relations, specifically for p⊥.
This is the reason we use the lightcone relations to define the evolution variable while we
use the energy definition of z to construct the actual kinematics of the branchings.

The deliberate choice of maintaining this dichotomy can be better understood by ex-
amining a few different p⊥ definitions in common use, in particular those in clustering
algorithms. To this end consider first the situation depicted in Fig. 3a: With the two par-
ticles massless, so that E1 = |p1| and E2 = |p2|, the momentum transverse to the vector
sum p1 + p2, which would correspond to the momentum of an imagined mother, is

p⊥ =
|p1 × p2|
|p1 + p2|

=
E1E2 sin θ12

√

E2
1 + E2

2 + 2E1E2 cos θ12

= p⊥1,2 . (10)

There is one troubling feature of this p⊥1,2: not only does it vanish when the opening angle
θ12 goes to zero, but it also vanishes for θ12 → π (unless E1 ≡ E2). Physically it is clear what
is happening in this limit: the parton with larger energy is going along the p1 +p2 direction
and the one with smaller energy is just opposite to it, Fig. 3b. In a clustering algorithm,
where the idea is to combine ‘nearby’ particles, a measure with such a behaviour clearly is
undesirable. Even when the starting point would be to have a p⊥-related measure for small
θ12, we would prefer to have this measure increase monotonically for increasing θ12, given
fix E1 and E2, and behave a bit more like the invariant mass at large angles. Therefore, in

8

T. Sjöstrand & PS, EPJC39 (2005) 129

T. Sjöstrand & R. Corke,EPJC69 (2010) 1
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Figure 1: Ratio of the kinematic p⊥ of the first shower emission to the POWHEG emission,
where the shower emission is (a) ISR or (b) FSR. In both cases, the results are shown
when starting the shower at the factorisation scale and when starting the shower at the
kinematical limit and vetoing above the POWHEG scale

being covered. An FSR emission, on the other hand, may have a small p⊥evol with respect
to the emitting parton but still a p⊥ > p⊥POWHEG with respect to the beam axis.

A simple solution to both these problems is instead to begin the shower at the largest
possible scale, and then veto any emissions with a kinematic p⊥ > p⊥POWHEG. If we consider
the first shower emission, the multiplicative nature of the no-emission probability ensures
that the emission rates below p⊥POWHEG will be correct, i.e. unaffected by the vetoes above
it. The picture is slightly less clear for subsequent emissions; having accepted one shower
emission below p⊥POWHEG, it is still possible for a later emission to be above it, since the
first emission may well have had p⊥evol > p⊥POWHEG. The probability of such an occurrence
is small, and effects formally of NNLO character, unenhanced by any large logarithms.
They mainly show up for low-p⊥ first emissions, where their importance on the event as a
whole is less, but still nonzero. Another NNLO issue is that recoil effects from one emission
can shift the p⊥ of the previous ones, along with the hard process itself, either to lower or
higher values.

The current POWHEG-hvq generator uses a second order running αs expression, but
with a Λ fixed at nf = 5. Although slightly inconsistent, this only leads to changes beneath
the Bottom and Charm scales. The Λ value is taken from a selected PDF set and is modified
as in [46]. In the LHEF output file, all incoming and radiated partons are massless and the
values of the couplings, αs and αem, are set to zero in all events.

To quantify how well the proposed interfacing works, we begin with top pair production
(mt = 171GeV), where all results are generated at LHC energies (pp,

√
s = 14TeV). In this

case, the number of light flavours, which defines the content of the proton and the allowed
radiation flavours, goes up to and includes the bottom quark (nl = 5). To study the effect
of the different shower starting scales, we examine the ratio of the first p⊥ in the shower
to the p⊥ of the POWHEG emission (where the shower p⊥ value is taken directly after
the emission). This is shown in Fig. 1, split into contributions from (a) ISR and (b) FSR.
For ISR, we note that the ratios do not become larger than unity, but that when starting
the shower at the factorisation scale, there is a region close to p⊥shower/p⊥hard = 1 where
the phase space is not completely filled. This gap is filled when starting the shower at the

9

ISR
POWHEG-PYTHIA8

Mismatch → depletion of 
emissions with pT just below 
the ME scale → Softer Spectra 

(can be 10% effect)

But ME cut not necessarily = shower evolution variable (even if shower ordered in pT)
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PYTHIA

amplitudes. The collinear singularity Q2 → 0 here corresponds to emission along direction
2 rather than direction 1. In that case the rôles of t̂ and û are interchanged, and the cross
section dσ̂/dt̂|PS2 is easily obtained. The total shower rate is given by the sum,

dσ̂

dt̂

∣

∣

∣

∣

∣

PS

=
dσ̂

dt̂

∣

∣

∣

∣

∣

PS1

+
dσ̂

dt̂

∣

∣

∣

∣

∣

PS2

=
σ0

ŝ

αs

2π

4

3

ŝ2 + m4
W

t̂û
. (7)

Thus the singularity structure of the parton-shower and matrix-element rates agree, giving
a ratio

Rqq′→gW(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
t̂2 + û2 + 2m2

Wŝ

ŝ2 + m4
W

= 1 −
2t̂û

ŝ2 + m4
W

(8)

constrained to the range
1

2
< Rqq′→gW(ŝ, t̂) ≤ 1 . (9)

The same exercise may be carried out for qg → q′W:
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σ0
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1
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ŝ2 + 2m2
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−ŝû
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Rqg→q′W(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
ŝ2 + û2 + 2m2

Wt̂

ŝ2 + 2m2
W(t̂ + û)

= 1 +
û(û − 2m2

W)

(ŝ − m2
W)2 + m4

W

, (12)

1 ≤ Rqg→q′W(ŝ, t̂) ≤
√

5 − 1

2(
√

5 − 2)
< 3. (13)

Note that, unlike the qq′ → gW process, there is no addition of two shower histories when
comparing with matrix elements, since here also the latter contains two separate terms
corresponding to qg and gq initial states, respectively.

The qq′ → gW process receives contributions from two Feynman graphs, t-channel
and u-channel, and the shower thus exactly matches this set, although obviously it does
not include interference between the two. The qg → q′W process is different, since only
its u-channel graph is covered by the parton-shower formalism, while the s-channel one
has no correspondence. Since this latter graph is free from collinear singularities, the
shower is not misbehaving in any regions of phase space because of this omission, but it
is interesting to speculate that the larger value for Rqg→q′W(ŝ, t̂) than for Rqq′→gW(ŝ, t̂)
partly may have its origin here (remember that a larger R(ŝ, t̂) means a smaller shower
emission rate).

Based on the above exercise, the standard parton-shower approach may be improved
in two steps. The first is to note that, since the shower so closely agrees with the correct
matrix-element expression — much better than one might have had reason to expect —
it is safe to apply the shower to all of phase space, i.e. to have Q2

max ≈ s rather than
the more traditional shower-generator limit Q2

max ≈ m2
W [12, 8]. The older choice was

inspired in part by the fear of a completely erroneous behaviour for Q2 & m2
W, in part by

4

Real Radiation:

Unitarity → Modified Sudakov Factor:

amplitudes. The collinear singularity Q2 → 0 here corresponds to emission along direction
2 rather than direction 1. In that case the rôles of t̂ and û are interchanged, and the cross
section dσ̂/dt̂|PS2 is easily obtained. The total shower rate is given by the sum,
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ŝ2 + m4
W

= 1 −
2t̂û
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Note that, unlike the qq′ → gW process, there is no addition of two shower histories when
comparing with matrix elements, since here also the latter contains two separate terms
corresponding to qg and gq initial states, respectively.

The qq′ → gW process receives contributions from two Feynman graphs, t-channel
and u-channel, and the shower thus exactly matches this set, although obviously it does
not include interference between the two. The qg → q′W process is different, since only
its u-channel graph is covered by the parton-shower formalism, while the s-channel one
has no correspondence. Since this latter graph is free from collinear singularities, the
shower is not misbehaving in any regions of phase space because of this omission, but it
is interesting to speculate that the larger value for Rqg→q′W(ŝ, t̂) than for Rqq′→gW(ŝ, t̂)
partly may have its origin here (remember that a larger R(ŝ, t̂) means a smaller shower
emission rate).

Based on the above exercise, the standard parton-shower approach may be improved
in two steps. The first is to note that, since the shower so closely agrees with the correct
matrix-element expression — much better than one might have had reason to expect —
it is safe to apply the shower to all of phase space, i.e. to have Q2

max ≈ s rather than
the more traditional shower-generator limit Q2

max ≈ m2
W [12, 8]. The older choice was

inspired in part by the fear of a completely erroneous behaviour for Q2 & m2
W, in part by
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solution, matching, is to introduce a transition from one method to the other at some
intermediate scale [6, 7, 8]. Such an approach is convenient for descriptions of exclusive
jet topologies, but tend to suffer from discontinuities between event classes and around
the transition scale. More ambitious is the merging strategy, where matrix-element in-
formation is integrated into the shower in such a way as to obtain a uniform and smooth
description. This approach so far has only been implemented for the merging to O(αs)
of e+e− → qq with e+e− → qqg [9, 7]. We will here introduce a corresponding O(αs)
merging in hadronic W production. Further details may be found in [10].

Since we neglect the decay of the W, alternatively imagine it decaying leptonically, all
QCD radiation occurs in the initial state. We will base our approach on the initial-state
shower algorithm of [11], as implemented in Pythia [12]. The principle of backwards
evolution implies that a shower may be reconstructed by starting at the large Q2 scale of
the hard process and then gradually considering emissions at lower and lower virtualities,
i.e. earlier and earlier in the cascade chain (and in time).

The starting point is the standard DGLAP evolution equation [13],

dfb(x, t)

dt
=

∑

a

∫ 1

x

dx′

x′

αs(t)

2π
fa(x

′, t) Pa→bc(z) , (1)

with fi the distribution function of parton species i, x the momentum fraction carried by
the parton, t = ln(Q2/Λ2

QCD) the resolution scale, and Pa→bc(z) the AP splitting kernels
for parton b obtaining a fraction z = x/x′ of the a momentum. Normally the evolution
is in terms of increasing t, but in the backwards evolution t is instead decreasing. Then
the DGLAP equation expresses the rate at which partons b of momentum fraction x are
‘unresolved’ into partons a of fraction x′, in a step dt backwards. The corresponding
relative probability is dPb/dt = (1/fb) (dfb/dt). The probability that b remains resolved
from some initial scale tmax down to t < tmax is thereby obtained by a Sudakov form factor

Sb(x, t; tmax) = exp

(

−
∫ tmax

t

1

fb(x, t′)

dfb(x, t′)

dt′
dt′

)

= exp

(

−
∫ tmax

t
dt′

∑

a

∫ 1

x

dx′

x′

αs(t′)

2π

fa(x′, t′)

fb(x, t′)
Pa→bc(z)

)

= exp

(

−
∫ tmax

t
dt′

αs(t′)

2π

∑

a

∫ 1

x
dz

x′fa(x′, t′)

xfb(x, t′)
Pa→bc(z)

)

. (2)

From this expression it is a matter of standard Monte Carlo techniques to gener-
ate the complete branching a → bc [11]; e.g., the t distribution of the branching is
−dSb(x, t; tmax)/dt. Given parton a, one may in turn reconstruct which parton branched
into it, and so on, down to the starting scale Q0. In each branching, the t scale gives the
tmax value of the branching to be considered next, i.e. the Q2 values are assumed strictly
ordered.

The definition of the Q2 and z variables is not unambiguous. Referring to the notation
of Fig. 1, and to the branching 3 → 1 + 4, the Q2 scale in our algorithm [11] is associated
with the spacelike virtuality of the produced parton 1, Q2 = −p2

1, while z is given by the
reduction of squared invariant mass of the contained subsystem, z = (p1 +p2)2/(p3 +p2)2.
In the limit of collinear kinematics, Q2 = 0, one recovers the momentum fraction z =
p1/p3. The z definition couples the two sides of the events, so that the order in which the
branchings 3 → 1 + 4 and 5 → 2 + 6 are considered makes some difference for the final
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amplitudes. The collinear singularity Q2 → 0 here corresponds to emission along direction
2 rather than direction 1. In that case the rôles of t̂ and û are interchanged, and the cross
section dσ̂/dt̂|PS2 is easily obtained. The total shower rate is given by the sum,

dσ̂

dt̂
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∣

∣

∣
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∣

∣

∣

∣
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∣
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∣
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σ0
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4
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ŝ2 + m4
W

t̂û
. (7)

Thus the singularity structure of the parton-shower and matrix-element rates agree, giving
a ratio

Rqq′→gW(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
t̂2 + û2 + 2m2

Wŝ

ŝ2 + m4
W

= 1 −
2t̂û

ŝ2 + m4
W

(8)

constrained to the range
1

2
< Rqq′→gW(ŝ, t̂) ≤ 1 . (9)

The same exercise may be carried out for qg → q′W:
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Rqg→q′W(ŝ, t̂) =
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, (12)

1 ≤ Rqg→q′W(ŝ, t̂) ≤
√

5 − 1

2(
√

5 − 2)
< 3. (13)

Note that, unlike the qq′ → gW process, there is no addition of two shower histories when
comparing with matrix elements, since here also the latter contains two separate terms
corresponding to qg and gq initial states, respectively.

The qq′ → gW process receives contributions from two Feynman graphs, t-channel
and u-channel, and the shower thus exactly matches this set, although obviously it does
not include interference between the two. The qg → q′W process is different, since only
its u-channel graph is covered by the parton-shower formalism, while the s-channel one
has no correspondence. Since this latter graph is free from collinear singularities, the
shower is not misbehaving in any regions of phase space because of this omission, but it
is interesting to speculate that the larger value for Rqg→q′W(ŝ, t̂) than for Rqq′→gW(ŝ, t̂)
partly may have its origin here (remember that a larger R(ŝ, t̂) means a smaller shower
emission rate).

Based on the above exercise, the standard parton-shower approach may be improved
in two steps. The first is to note that, since the shower so closely agrees with the correct
matrix-element expression — much better than one might have had reason to expect —
it is safe to apply the shower to all of phase space, i.e. to have Q2

max ≈ s rather than
the more traditional shower-generator limit Q2

max ≈ m2
W [12, 8]. The older choice was

inspired in part by the fear of a completely erroneous behaviour for Q2 & m2
W, in part by
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amplitudes. The collinear singularity Q2 → 0 here corresponds to emission along direction
2 rather than direction 1. In that case the rôles of t̂ and û are interchanged, and the cross
section dσ̂/dt̂|PS2 is easily obtained. The total shower rate is given by the sum,
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Thus the singularity structure of the parton-shower and matrix-element rates agree, giving
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ŝ2 + m4
W

= 1 −
2t̂û
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2(
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Note that, unlike the qq′ → gW process, there is no addition of two shower histories when
comparing with matrix elements, since here also the latter contains two separate terms
corresponding to qg and gq initial states, respectively.

The qq′ → gW process receives contributions from two Feynman graphs, t-channel
and u-channel, and the shower thus exactly matches this set, although obviously it does
not include interference between the two. The qg → q′W process is different, since only
its u-channel graph is covered by the parton-shower formalism, while the s-channel one
has no correspondence. Since this latter graph is free from collinear singularities, the
shower is not misbehaving in any regions of phase space because of this omission, but it
is interesting to speculate that the larger value for Rqg→q′W(ŝ, t̂) than for Rqq′→gW(ŝ, t̂)
partly may have its origin here (remember that a larger R(ŝ, t̂) means a smaller shower
emission rate).

Based on the above exercise, the standard parton-shower approach may be improved
in two steps. The first is to note that, since the shower so closely agrees with the correct
matrix-element expression — much better than one might have had reason to expect —
it is safe to apply the shower to all of phase space, i.e. to have Q2

max ≈ s rather than
the more traditional shower-generator limit Q2

max ≈ m2
W [12, 8]. The older choice was

inspired in part by the fear of a completely erroneous behaviour for Q2 & m2
W, in part by
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solution, matching, is to introduce a transition from one method to the other at some
intermediate scale [6, 7, 8]. Such an approach is convenient for descriptions of exclusive
jet topologies, but tend to suffer from discontinuities between event classes and around
the transition scale. More ambitious is the merging strategy, where matrix-element in-
formation is integrated into the shower in such a way as to obtain a uniform and smooth
description. This approach so far has only been implemented for the merging to O(αs)
of e+e− → qq with e+e− → qqg [9, 7]. We will here introduce a corresponding O(αs)
merging in hadronic W production. Further details may be found in [10].

Since we neglect the decay of the W, alternatively imagine it decaying leptonically, all
QCD radiation occurs in the initial state. We will base our approach on the initial-state
shower algorithm of [11], as implemented in Pythia [12]. The principle of backwards
evolution implies that a shower may be reconstructed by starting at the large Q2 scale of
the hard process and then gradually considering emissions at lower and lower virtualities,
i.e. earlier and earlier in the cascade chain (and in time).

The starting point is the standard DGLAP evolution equation [13],

dfb(x, t)

dt
=

∑

a

∫ 1

x

dx′

x′

αs(t)

2π
fa(x

′, t) Pa→bc(z) , (1)

with fi the distribution function of parton species i, x the momentum fraction carried by
the parton, t = ln(Q2/Λ2

QCD) the resolution scale, and Pa→bc(z) the AP splitting kernels
for parton b obtaining a fraction z = x/x′ of the a momentum. Normally the evolution
is in terms of increasing t, but in the backwards evolution t is instead decreasing. Then
the DGLAP equation expresses the rate at which partons b of momentum fraction x are
‘unresolved’ into partons a of fraction x′, in a step dt backwards. The corresponding
relative probability is dPb/dt = (1/fb) (dfb/dt). The probability that b remains resolved
from some initial scale tmax down to t < tmax is thereby obtained by a Sudakov form factor

Sb(x, t; tmax) = exp

(

−
∫ tmax

t

1

fb(x, t′)

dfb(x, t′)

dt′
dt′

)

= exp

(

−
∫ tmax

t
dt′

∑

a

∫ 1

x

dx′

x′

αs(t′)

2π

fa(x′, t′)

fb(x, t′)
Pa→bc(z)

)

= exp

(

−
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t
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2π

∑
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∫ 1

x
dz

x′fa(x′, t′)

xfb(x, t′)
Pa→bc(z)

)

. (2)

From this expression it is a matter of standard Monte Carlo techniques to gener-
ate the complete branching a → bc [11]; e.g., the t distribution of the branching is
−dSb(x, t; tmax)/dt. Given parton a, one may in turn reconstruct which parton branched
into it, and so on, down to the starting scale Q0. In each branching, the t scale gives the
tmax value of the branching to be considered next, i.e. the Q2 values are assumed strictly
ordered.

The definition of the Q2 and z variables is not unambiguous. Referring to the notation
of Fig. 1, and to the branching 3 → 1 + 4, the Q2 scale in our algorithm [11] is associated
with the spacelike virtuality of the produced parton 1, Q2 = −p2

1, while z is given by the
reduction of squared invariant mass of the contained subsystem, z = (p1 +p2)2/(p3 +p2)2.
In the limit of collinear kinematics, Q2 = 0, one recovers the momentum fraction z =
p1/p3. The z definition couples the two sides of the events, so that the order in which the
branchings 3 → 1 + 4 and 5 → 2 + 6 are considered makes some difference for the final
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phase space, and dΦr is Πdri times a suitable Jacobian. We now write the NLO

exact formula in the following way

dσ = B(v)dΦv + V (v)dΦv + [R(v, r)dΦvdΦr − C(v, r)dΦvdΦrP] =

[V (v) + (R(v, r) − C(v, r))dΦrP] dΦv + B(v)dΦv

[

1 +
R(v, r)

B(v)
(1 − P) dΦr

]

(5.6)

Comparing eqs. (5.2) and (5.3), we immediately see that the analogue of eq. (5.2)
arising from eq. (5.6) is given by

dσ = [V (v) + (R(v, r) − C(v, r)) dΦrP] dΦv

+ B(v)dΦv

[

∆(NLO)
R (0) +∆(NLO)
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(5.7)

where we have defined
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R (pT) = e−

∫

dΦr
R(v,r)
B(v) θ(kT(v,r)−pT) (5.8)

One can implement eq. (5.7) in an SMC+NLO implementation by generating Born
events with distribution B(v1 . . . vl), generating the first emission according to the

second line of eq. (5.7), and then generating the subsequent emissions as pT vetoed
shower. Furthermore, one should associate a truncated vetoed shower from the

combined emitted parton and the closest (in pT) primary parton. The first term
in eq. (5.7) can be generated independently, and attached to an ordinary shower,
since it is formally of higher order in αS. With this method, negative weighted

events could be generated, since this term is not guaranteed to be positive. A better
procedure would be the following. One defines

B̄(v) = B(v) + V (v)

+

∫

(R(v, r) − C(v, r))dΦr (5.9)

and then implements the hardest emission as
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dΦr
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. (5.10)

Eq. (5.10) overcomes the problem of the negative weights, in the sense that the region

where B̄ is negative must signal the failure of perturbation theory, since the NLO
negative terms have overcome the Born term.

The structure of the counterterm and the projection in NLO calculations is in
general more involved than in the example illustrated above. However, one can
separate the real contribution into several term, each one of them singular in a

particular collinear region7. To each term one can associate a counterterm with a
7For example, defining Rk = 1

∑

i
1

Si

1
Sk

, where Sk is the mass of the pair formed by the kth parton

with the radiated parton, we have
∑

Ri = R, and each Rk is singular only in the region where the
emitted parton is collinear to the kth parton, or soft.
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One can implement eq. (5.7) in an SMC+NLO implementation by generating Born
events with distribution B(v1 . . . vl), generating the first emission according to the

second line of eq. (5.7), and then generating the subsequent emissions as pT vetoed
shower. Furthermore, one should associate a truncated vetoed shower from the

combined emitted parton and the closest (in pT) primary parton. The first term
in eq. (5.7) can be generated independently, and attached to an ordinary shower,
since it is formally of higher order in αS. With this method, negative weighted

events could be generated, since this term is not guaranteed to be positive. A better
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where B̄ is negative must signal the failure of perturbation theory, since the NLO
negative terms have overcome the Born term.

The structure of the counterterm and the projection in NLO calculations is in
general more involved than in the example illustrated above. However, one can
separate the real contribution into several term, each one of them singular in a
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Figure 1: Schematic picture of an initial-state parton shower, extending from both sides
of the event in to the W.

configuration. The rule adopted is therefore to reconstruct branching kinematics strictly
in order of decreasing Q2, i.e. interleaving emissions on the two sides of the event.

Now let us compare the step from qq′ → W to qq′ → gW between the matrix-
element and parton-shower languages. Since only one branching is to be considered, the
comparison has to be with a truncated shower, e.g. where only the branching 3 → 1 + 4
occurs in Fig. 1. The 2 → 2 process thus is q(3) + q′(2) → g(4) + W(0), for which

ŝ = (p3 + p2)
2 =

(p1 + p2)2

z
=

m2
W

z
,

t̂ = (p3 − p4)
2 = p2

1 = −Q2 , (3)

û = m2
W − ŝ − t̂ = Q2 −

1 − z

z
m2

W .

The matrix element for qq′ → gW can be written as [14]

dσ̂

dt̂

∣

∣

∣

∣

∣

ME

=
σ0

ŝ
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Wŝ

t̂û
. (4)

Here σ0 is the cross section for qq′ → W, σ0 = (π2αem/3 sin2θW m2
W)|Vqq′ |2δ(1−m2

W/x1x2s)
in the narrow-width limit, with δ(1−m2

W/x1x2s) #→
∫

dz δ(1−m2
W/zx3x2s) in the 2 → 2

process kinematics. (The details of the σ0 factor are not relevant for the point we want
to make, so the presentation is intentionally sketchy.) Now rewrite eq. (4) in terms of z
and Q2, using eq. (3):

dσ̂

dQ2

∣

∣

∣

∣

∣

ME

=
σ0z

m2
W

αs

2π

4

3

(1 + z2)m4
W − 2z(1 − z)Q2m2

W + 2z2Q4

zQ2((1 − z)m2
W − zQ2)

Q2→0−→ σ0

αs

2π

4

3

1 + z2

1 − z

1

Q2
=

dσ̂

dQ2

∣

∣

∣

∣

∣

PS1

. (5)

We here easily recognize the splitting kernel for q → qg, i.e. the matrix element reduces
to the the normal shower expression in the collinear limit, as it should be. Some extra
but trivial work is necessary to include the convolution with parton distributions, which
involves f1(x1, Q2) in lowest order and f3(x3, Q2) for the O(αs) processes.

In order to study how the shower populates the phase space, it is straightforward to
translate back the above expression,

dσ̂

dt̂

∣

∣

∣

∣

∣

PS1

=
σ0

ŝ

αs

2π

4

3

ŝ2 + m4
W

t̂(t̂ + û)
. (6)

To this we should add the other possible shower history, where the gluon is emitted
by a branching 5 → 2 + 6 instead; after all, the matrix-element expression contains both

3

=
(for qg→q’W)

for gluon radiation from a qq̄ initial-state, and

Cgq̄,q =

[

−
1

u
2 g2

s TF {1 − 2x (1 − x)}Bqq̄(M̄, Ȳ , θ̄l)

]

⊕

, (2.29)

for the gq̄. Analogous formulae apply for the qq̄ and the qg counterterms in the ! collinear

direction.

The collinear remnants are given by

Gqq̄,g
⊕ (Φ2,⊕) =

αS

2π
CF

[(

2

1 − z
log

(1 − z)2

z

)

+

− (1 + z) log
(1 − z)2

z
+ (1 − z)

+

(

2

3
π2 − 5

)

δ(1 − z) +

(

1 + z2

1 − z

)

+

log
M2

µ2
F

]

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
, (2.30)

Ggq̄,q
⊕ (Φ2,⊕) =

αS

2π
TF

{

[

z2 + (1 − z)2
]

[

log
(1 − z)2

z
+ log

M2

µ2
F

]

+ 2z(1 − z)

}

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
.

(2.31)

The Φ2,⊕ notation, according to ref. [5], represents the set of variables

Φ2,⊕ = {x⊕, x", z, k1, k2}, z x⊕K⊕ + x"K" = k1 + k2 . (2.32)

We also associate an underlying Born configuration Φ̄2 to the Φ2,⊕ kinematics, defined by

k̄⊕ = z x⊕K⊕, k̄" = x"K", k̄1 = k1, k̄2 = k2 . (2.33)

The other two collinear remnants, Gqq̄,g
" (Φ2,") and Gqg,q̄

" (Φ2,"), are equal to Gqq̄,g
⊕ (Φ2,⊕)

and Ggq̄,q
⊕ (Φ2,⊕) respectively, with

[

Bqq̄(M̄ , Ȳ , θ̄l)
]

⊕
replaced by

[

Bqq̄(M̄, Ȳ , θ̄l)
]

"
. We then

introduce the notation B, V , R, C, G, to stand for B, V, R, C, G, each multiplied by its

appropriate parton densities. The differential cross section, multiplied by some infrared

safe observable O, can then be written as

〈O〉 =
∑

qq̄

{

∫

dΦ2 [Bqq̄(Φ2) + Vqq̄(Φ2)] O(Φ2)

+

∫

dΦ3

{

Rqq̄,g(Φ3)O(Φ3) − C⊕
qq̄,g(Φ3)

[

O(Φ̄2)
]

⊕
− C"

qq̄,g(Φ3)
[

O(Φ̄2)
]

"

}

+

∫

dΦ3

{

Rgq̄,q(Φ3)O(Φ3) − Cgq̄,q(Φ3)
[

O(Φ̄2)
]

⊕

}

+

∫

dΦ3

{

Rqg,q̄(Φ3)O(Φ3) − Cqg,q̄(Φ3)
[

O(Φ̄2)
]

"

}

+

∫

dΦ2,⊕
[

Gqq̄,g
⊕ (Φ2,⊕) + Ggq̄,q

⊕ (Φ2,⊕)
]

O(Φ2,⊕)

+

∫

dΦ2,"
[

Gqq̄,g
" (Φ2,") + Gqg,q̄

" (Φ2,")
]

O(Φ2,")

}

. (2.34)
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for gluon radiation from a qq̄ initial-state, and

Cgq̄,q =

[

−
1

u
2 g2

s TF {1 − 2x (1 − x)}Bqq̄(M̄, Ȳ , θ̄l)

]

⊕

, (2.29)

for the gq̄. Analogous formulae apply for the qq̄ and the qg counterterms in the ! collinear

direction.

The collinear remnants are given by

Gqq̄,g
⊕ (Φ2,⊕) =

αS

2π
CF

[(

2

1 − z
log

(1 − z)2

z

)

+

− (1 + z) log
(1 − z)2

z
+ (1 − z)

+

(

2

3
π2 − 5

)

δ(1 − z) +

(

1 + z2

1 − z

)

+

log
M2

µ2
F

]

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
, (2.30)

Ggq̄,q
⊕ (Φ2,⊕) =

αS

2π
TF

{

[

z2 + (1 − z)2
]

[

log
(1 − z)2

z
+ log

M2

µ2
F

]

+ 2z(1 − z)

}

[

Bqq̄(M̄, Ȳ , θ̄l)
]

⊕
.

(2.31)

The Φ2,⊕ notation, according to ref. [5], represents the set of variables

Φ2,⊕ = {x⊕, x", z, k1, k2}, z x⊕K⊕ + x"K" = k1 + k2 . (2.32)

We also associate an underlying Born configuration Φ̄2 to the Φ2,⊕ kinematics, defined by

k̄⊕ = z x⊕K⊕, k̄" = x"K", k̄1 = k1, k̄2 = k2 . (2.33)

The other two collinear remnants, Gqq̄,g
" (Φ2,") and Gqg,q̄

" (Φ2,"), are equal to Gqq̄,g
⊕ (Φ2,⊕)

and Ggq̄,q
⊕ (Φ2,⊕) respectively, with

[

Bqq̄(M̄ , Ȳ , θ̄l)
]

⊕
replaced by

[

Bqq̄(M̄, Ȳ , θ̄l)
]

"
. We then

introduce the notation B, V , R, C, G, to stand for B, V, R, C, G, each multiplied by its

appropriate parton densities. The differential cross section, multiplied by some infrared

safe observable O, can then be written as

〈O〉 =
∑

qq̄

{

∫

dΦ2 [Bqq̄(Φ2) + Vqq̄(Φ2)] O(Φ2)

+

∫

dΦ3

{

Rqq̄,g(Φ3)O(Φ3) − C⊕
qq̄,g(Φ3)

[

O(Φ̄2)
]

⊕
− C"

qq̄,g(Φ3)
[

O(Φ̄2)
]

"

}

+

∫

dΦ3

{

Rgq̄,q(Φ3)O(Φ3) − Cgq̄,q(Φ3)
[

O(Φ̄2)
]

⊕

}

+

∫

dΦ3

{

Rqg,q̄(Φ3)O(Φ3) − Cqg,q̄(Φ3)
[

O(Φ̄2)
]

"

}

+

∫

dΦ2,⊕
[

Gqq̄,g
⊕ (Φ2,⊕) + Ggq̄,q

⊕ (Φ2,⊕)
]

O(Φ2,⊕)

+

∫

dΦ2,"
[

Gqq̄,g
" (Φ2,") + Gqg,q̄

" (Φ2,")
]

O(Φ2,")

}

. (2.34)

– 6 –

+

(+analogous for qq→gW)

Nason, JHEP 11(2004)040
Drell-Yan:  Alioli et al., JHEP 07(2008)060

(using Sjöstrand’s notation)
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0 1 2 3

R
at

io
 to

 P
20

11

0.5

1

1.5

jetN
0 1 2 3

je
ts

) [
pb

]
je

t
 N
≥

(W
   

+ 
σ

210

310

410 P2011
↑ Alp. Λ

↑ Alp. Λ, ↑ PS Λ
↓ Alp. Λ, ↓ PS Λ

↓ Alp. Λ

m
cp

lo
ts

.c
er

n.
ch

pp, 7 TeV, W+jets, el-chan.

Alpgen+Pythia
leading jet

40 60 80 100

R
at

io
 to

 P
20

11

0.8

0.9

1

1.1

1.2

 [GeV]
T

jet p
40 60 80 100

 [p
b/

G
eV

]
T

/d
p

σd

1

10

P2011
↑ Alp. Λ

↑ Alp. Λ, ↑ PS Λ
↓ Alp. Λ, ↓ PS Λ

↓ Alp. Λ

m
cp

lo
ts

.c
er

n.
ch

pp, 7 TeV, W+jets, el-chan.

Alpgen+Pythia
leading jet

Figure 5: Comparison of AlpGen + Pythia 6 (pT >20 GeV) jet multiplicity (left) and leading jet
transverse momentum (right) distributions in W+jets electron channel events. The samples are
generated using different AlpGen + Pythia 6 parameter setups described in the text.

3.2 Tests of the Consistent �S Approach: Behaviour Under Scale Variations

In this section we study the behaviour of the new AlpGen + Pythia 6 Perugia 2011 “matched” tune under
�QCD variations to demonstrate that, with a consistent treatment of �S, the expected behaviour of ME-PS
matched predictions under variations of tuning parameters is restored. W+jets events selected with the same
criteria applied for Fig. 3 are used. Figure 5 shows the jet multiplicity (left) and leading jet transverse mo-
mentum (right) distributions for the Perugia 2011 “matched” tune and four variant tune samples generated
with different �QCD values. Two samples, labelled as “� Alp. �” and “� Alp. ⇥”, have �QCD respectively
increased and decreased by a factor of 2 only in the ME calculation. This is achieved by setting respectively
the AlpGen parameter ktfac to 1/2 and 2. The increase (decrease) of the �QCD value in AlpGen results
in more (less) jets and a harder (softer) leading jet spectrum as shown in Fig. 5. The two samples labelled as
“� PS �, � Alp. �” and “� PS ⇥, � Alp. ⇥” correspond to a consistent variation of �QCD both in the ME
and PS, with �QCD respectively increased and decreased by a factor of 2. The impact of these variations is
qualitatively similar to the case where �QCD is only varied in the ME, restoring the expected behaviour of
ME-PS matched prediction under variation of �QCD. However, the samples with �QCD varied simultane-
ously in the ME and in the PS exhibit a smaller deviation from the nominal sample. The mitigation of the
impact of a �QCD coherent change in a ME-PS matched sample compared to the same change only in the
ME calculation is due to the interplay between the radiation produced by PS and the matching algorithm, as
detailed in Section 2.1. While the choice of the xlclu parameter allows to directly adapt AlpGen to possible
future changes in the choice of �QCD in Pythia, the variation of the ktfac parameter in the standard range
0.5 < ktfac< 2 can be used to establish the range of the systematical uncertainty, or to tune the description
of specific observables.
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Much effort has gone into ensuring that the behaviour across the boundary between the two regions be as
smooth as possible. CKKW showed [22] that it is possible to remove any dependence on this “matching
scale” at NLL precision by careful choices of all ingredients in the matching; technical details of the im-
plementation are important, and the dependence on the unphysical matching scale may be larger than NLL
unless the implementation matches the theoretical algorithm precisely [23–25].

Especially when two different computer codes are used for matrix elements and showering, respectively (as
when AlpGen or MadGraph [26] is combined with Pythia 6 or Herwig), inconsistent parameter sets between
the two codes can jeopardise the consistency of the calculation and lead to unexpected results, as will be
illustrated in the following sections.

To give a very simple theoretical example, suppose a matched matrix-element generator (MG) uses a differ-
ent definition of �s than the parton-shower generator (SG). Suppressing parton luminosity factors to avoid
clutter, the real corrections, integrated over the hard part of phase space, for some arbitrary final state F , will
then have the form

⌅ incl
F+1 =

⇤ s

Q2
F

d�F+1 �MG
s |MF+1|2 , (1)

where we have factored out the coupling corresponding to the “+1” parton and suppressed the dependence
on any other couplings that may be present in |MF+1|2. The virtual corrections at the same order, generated
by the shower off F , will have the form

⌅ excl
F = ⌅ incl

F �
⇤

d�F

⇤ s

Q2
F

dQ2

Q2 dz ⇤
i

�SG
s

2⇤
Pi(z) |MF |2 + O(�2

s ) , (2)

with Pi(z) the DGLAP splitting kernels (or equivalent radiation functions in dipole or antenna shower ap-
proaches). If the two codes use the same definitions for the strong coupling, �SG

s = �MG
s , then the fact

that P(z)/Q2 captures the leading singularities of |MF+1|2 guarantees that the difference between the two
expressions can at most be a non-singular term. Integrated over phase space, such a term merely leads to
a finite O(�s) change to the total cross section, which is within the expected precision. Indeed, it is a cen-
tral ingredient in both the MLM and (L)-CKKW matching prescriptions that a reweighting of the matched
matrix elements be performed in order to ensure that the scales appearing in �s match smoothly between
the hard and soft regions. Thus, we may assume that the choice of renormalization scale after matching is
µ ⇥ pT on both sides of the matching scale, where pT is a scale characterising the momentum transfer at
each emission vertex, as established by [27, 28] and encoded in the CKKW formalism [22].

In the case of the CKKW approach as implemented in the Sherpa MC framework [29], this prescription can
be controlled exactly, since the matrix element and the shower evolution are part of the same computer code
and hence naturally use the same �s definition. This is also true in Lönnblad’s variant [23] of the algorithm,
used in Ariadne [30]. In the case of codes like AlpGen or Madgraph, on the other hand, an issue emerges.
These codes are designed to generate parton-level event samples to be used with an arbitrary shower MC.
Different shower MCs however use slightly different scales for the parton branchings, as a result of different
approaches to the shower evolution, and may use different values of ⇥QCD, as a result of the tuning of the
showers and/or underlying events. A possible mismatch therefore arises in the values of �s used by the
matrix-element calculation and those used by the shower.

If there is a mismatch in ⇥QCD or �s(MZ), then this will effectively generate a real-virtual difference whose
leading singularities are proportional to

�2
s b0 ln

�
⇥2

MG
⇥2

SG

⇥
dQ2

Q2 ⇤
i

Pi(z) |MF |2 . (3)

3

AlpGen: can set xlclu = ΛQCD since v.2.14 (default remains to inherit from PDF)

Pythia 6: set common PARP(61)=PARP(72)=PARP(81) = ΛQCD in Perugia 2011 tunes
Pythia 8: use TimeShower:alphaSvalue and SpaceShower:alphaSvalue 
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Figure 5: Comparison of AlpGen + Pythia 6 (pT >20 GeV) jet multiplicity (left) and leading jet
transverse momentum (right) distributions in W+jets electron channel events. The samples are
generated using different AlpGen + Pythia 6 parameter setups described in the text.

3.2 Tests of the Consistent �S Approach: Behaviour Under Scale Variations

In this section we study the behaviour of the new AlpGen + Pythia 6 Perugia 2011 “matched” tune under
�QCD variations to demonstrate that, with a consistent treatment of �S, the expected behaviour of ME-PS
matched predictions under variations of tuning parameters is restored. W+jets events selected with the same
criteria applied for Fig. 3 are used. Figure 5 shows the jet multiplicity (left) and leading jet transverse mo-
mentum (right) distributions for the Perugia 2011 “matched” tune and four variant tune samples generated
with different �QCD values. Two samples, labelled as “� Alp. �” and “� Alp. ⇥”, have �QCD respectively
increased and decreased by a factor of 2 only in the ME calculation. This is achieved by setting respectively
the AlpGen parameter ktfac to 1/2 and 2. The increase (decrease) of the �QCD value in AlpGen results
in more (less) jets and a harder (softer) leading jet spectrum as shown in Fig. 5. The two samples labelled as
“� PS �, � Alp. �” and “� PS ⇥, � Alp. ⇥” correspond to a consistent variation of �QCD both in the ME
and PS, with �QCD respectively increased and decreased by a factor of 2. The impact of these variations is
qualitatively similar to the case where �QCD is only varied in the ME, restoring the expected behaviour of
ME-PS matched prediction under variation of �QCD. However, the samples with �QCD varied simultane-
ously in the ME and in the PS exhibit a smaller deviation from the nominal sample. The mitigation of the
impact of a �QCD coherent change in a ME-PS matched sample compared to the same change only in the
ME calculation is due to the interplay between the radiation produced by PS and the matching algorithm, as
detailed in Section 2.1. While the choice of the xlclu parameter allows to directly adapt AlpGen to possible
future changes in the choice of �QCD in Pythia, the variation of the ktfac parameter in the standard range
0.5 < ktfac< 2 can be used to establish the range of the systematical uncertainty, or to tune the description
of specific observables.
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note: running order also 
has a (subleading) effect
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Choice of Renormalization Scale

One-loop radiation functions contain pieces proportional to 
the β function (E.g.,: e+e-→3 jets, for arbitrary choice of μR (e.g., μR= mZ) piece 
from integrating quark loops over all of phase space

Proportional to the β function (b0). 

Can be absorbed by using μR
4 = s13 s23 = pT

2 s. 

42

|M0
3 |2 + M1

3 ·
�
M0

3

⇥⇥ = ⌃0|M0
2 |2

⌥
⇤(1� y13 � y23) (y13y23 (1� y13 � y23))�� dy13 dy23

⇤
⇤
A0

3 +
�s

2⇧
(LC + QL)

⌅

With LC as an abbreviation for Leading Color and QL for Quark Loop as defined below. The notation
of the infrared pole structure of these terms has been written similar to the integrated antenna in [8],
with the difference that we have chosen to write out the expansion of the scale factor µ in the integrated
antenna terms in order to obtain explicitly dimensionless logarithms.
Note that we include both the piece proportional to CF NC and the piece proportional to CF nf in our
definition of “Leading Color”.LH: Uuuh, this remark in combination with my notation is a definite
guarantee for confusion..

LC = NC

�
A0

3 ·
⇤
2I(1)

qg (⇥, µ2/s13) + 2I(1)
qg (⇥, µ2/s23)

⌅

+ A0
3

⇧
�R(y13, y23) +

3
2

ln
⇧

Q2

µ2
R

⌃
+

5
3

ln
⇧

µ2
R

s23

⌃
+

5
3

ln
⇧

µ2
R

s13

⌃
� 4

⌃

1
s123

�
+ 2 ln(y13)

⇧
1 +

s13

s12 + s23
� s23

s12 + s23
� 4s23s13

(s12 + s23)2

⌃

+ 2 ln(y23)
⇧

1� s13

s12 + s13
+

s23

s12 + s13
� 4s23s13

(s12 + s13)2

⌃

+
1
2

⇧
s13

s23
� s13

s12 + s13
+

s23

s13
� s23

s12 + s23
+

s12

s23
+

s12

s13
+ 1

⌃  

QL = nf

�
A0

3 ·
⇤
2I(1)

qg,F (⇥, µ2/s13) + 2I(1)
qg,F (⇥, µ2/s23)

⌅

+
1
6
A0

3

⇧
ln

⇧
s23

µ2
R

⌃
+ ln

⇧
s13

µ2
R

⌃⌃ 

with

R(y, z) = ln(y) ln(z)� ln(y) ln(1� y)� ln(z) ln(1� z) +
⇧2

6
� Li2(y)� Li2(z)

and

A0
3 =

1
s123

⇧
(1� ⇥)s13

s23
+

(1� ⇥)s23

s13
+ 2

s12s123 � ⇥s13s23

s13s23

⌃
(1� ⇥)

PS: It should be mentioned that A0
3 is essentially |M3|2/|M2|2, again taking care to get the exact normal-

ization right. The I(1) functions should be given either here or at least in an appendix, with a reference
to GGG.LH: reference to GGG is already above when I refer to our choice of notation.. should we
mention it again?
With the matrix element expressed in this form, cancellation of the infrared poles against integrated
antennae coming from the shower (below) will be particularly simple and will yield an expression purely
dependent on the renormalization scale, µR, and on the kinematic invariants s12 and s23, but not on the
scale factor µ.

5

nf + gluon loops

in Parton Showers
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Choice of Renormalization Scale

One-loop radiation functions contain pieces proportional to 
the β function (E.g.,: e+e-→3 jets, for arbitrary choice of μR (e.g., μR= mZ) piece 
from integrating quark loops over all of phase space

Proportional to the β function (b0). 

Can be absorbed by using μR
4 = s13 s23 = pT

2 s. 

In an ordered shower, quark (and gluon) loop integrals are 
restricted by strong-ordering condition → modified to

μR = pT (but depends on ordering variable? Anyway, we’re using pT here)

Additional logs induced by gluon loops can be absorbed by replacing ΛMS 
by ΛMC ~ 1.5 ΛMS (with mild dependence on number of flavors)
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|M0
3 |2 + M1

3 ·
�
M0

3

⇥⇥ = ⌃0|M0
2 |2

⌥
⇤(1� y13 � y23) (y13y23 (1� y13 � y23))�� dy13 dy23

⇤
⇤
A0

3 +
�s

2⇧
(LC + QL)

⌅

With LC as an abbreviation for Leading Color and QL for Quark Loop as defined below. The notation
of the infrared pole structure of these terms has been written similar to the integrated antenna in [8],
with the difference that we have chosen to write out the expansion of the scale factor µ in the integrated
antenna terms in order to obtain explicitly dimensionless logarithms.
Note that we include both the piece proportional to CF NC and the piece proportional to CF nf in our
definition of “Leading Color”.LH: Uuuh, this remark in combination with my notation is a definite
guarantee for confusion..

LC = NC

�
A0

3 ·
⇤
2I(1)

qg (⇥, µ2/s13) + 2I(1)
qg (⇥, µ2/s23)

⌅
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3

⇧
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3
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⇧
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R

⌃
+

5
3
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⇧
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⌃
+

5
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⇧
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R
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⌃
� 4

⌃

1
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�
+ 2 ln(y13)

⇧
1 +

s13

s12 + s23
� s23

s12 + s23
� 4s23s13
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⌃

+ 2 ln(y23)
⇧

1� s13

s12 + s13
+

s23

s12 + s13
� 4s23s13
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⌃

+
1
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⇧
s13

s23
� s13

s12 + s13
+

s23

s13
� s23
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+
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+
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s13
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QL = nf

�
A0

3 ·
⇤
2I(1)

qg,F (⇥, µ2/s13) + 2I(1)
qg,F (⇥, µ2/s23)

⌅

+
1
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3

⇧
ln

⇧
s23

µ2
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⌃
+ ln

⇧
s13

µ2
R

⌃⌃ 

with

R(y, z) = ln(y) ln(z)� ln(y) ln(1� y)� ln(z) ln(1� z) +
⇧2

6
� Li2(y)� Li2(z)

and

A0
3 =

1
s123

⇧
(1� ⇥)s13

s23
+

(1� ⇥)s23

s13
+ 2

s12s123 � ⇥s13s23

s13s23

⌃
(1� ⇥)

PS: It should be mentioned that A0
3 is essentially |M3|2/|M2|2, again taking care to get the exact normal-

ization right. The I(1) functions should be given either here or at least in an appendix, with a reference
to GGG.LH: reference to GGG is already above when I refer to our choice of notation.. should we
mention it again?
With the matrix element expressed in this form, cancellation of the infrared poles against integrated
antennae coming from the shower (below) will be particularly simple and will yield an expression purely
dependent on the renormalization scale, µR, and on the kinematic invariants s12 and s23, but not on the
scale factor µ.

5

nf + gluon loops

in Parton Showers

Catani, Marchesini, Webber, NPB349 (1991) 635

Note: CMW not automatic in PYTHIA, has to be done by hand, by choosing effective Λ or αs(MZ) values instead of MS ones
Note 2: There are obviously still order 2 uncertainties on μR, but this is the background for the central choice made in showers

Remaining ambiguity → tuning
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► First Order Shower expansion 

PS Born LL
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► First Order Shower expansion 

PS 

Unitarity of shower  3-parton real = ÷ 2-parton “virtual” 

Born LL
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► First Order Shower expansion 

PS 

Unitarity of shower  3-parton real = ÷ 2-parton “virtual” 

► 3-parton real correction (A3 = |M3|2/|M2|2 + finite terms; α, β) 

Born LL

X+1(0) X+1(0)
X+1(0)

Born

Born
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► First Order Shower expansion 

PS 

Unitarity of shower  3-parton real = ÷ 2-parton “virtual” 

► 3-parton real correction (A3 = |M3|2/|M2|2 + finite terms; α, β) 

Born LL

X+1(0) X+1(0)
X+1(0)

Born

Born

Finite terms cancel 
in 3-parton O 
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► First Order Shower expansion 

PS 

Unitarity of shower  3-parton real = ÷ 2-parton “virtual” 

► 3-parton real correction (A3 = |M3|2/|M2|2 + finite terms; α, β) 

Born LL

X+1(0) X+1(0)
X+1(0)

Born

Born

Finite terms cancel 
in 3-parton O 

► 2-parton virtual correction (same example) 

X(1) X(1) Born LL X+1(0)

Born

Born Finite terms cancel in 2-
parton O (normalization) 
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► First Order Shower expansion 

PS 

Unitarity of shower  3-parton real = ÷ 2-parton “virtual” 

► 3-parton real correction (A3 = |M3|2/|M2|2 + finite terms; α, β) 

Finite terms cancel 
in 3-parton O 

► 2-parton virtual correction (same example) 

Finite terms cancel in 2-
parton O (normalization) 


