Matching at LO and NLO

Introduction to QCD - Lecture 4

P. Skands (CERN)

Lecture 2 : Matrix elements are correct

When all jets are hard and there are no hierarchies
(single-scale problem = small corner of phase space, but an important one!)
But they are unpredictive for strongly ordered emissions

Lecture 3 : Parton Showers are correct

When all emissions are (successively) strongly ordered (= dominant QCD structures)

But they are unpredictive for hard jets
Often too soft (but not guaranteed! Can also err by being too hard!)
ME-PS matching \rightarrow ONE calculation to rule them all

Example: $\mathrm{H}^{0} \rightarrow$ bb

Born + Shower

Example: $\mathrm{H}^{0} \rightarrow \mathrm{~b} \overline{\mathrm{~b}}$

Born + Shower

 $+$

Shower Approximation to Born + I

Born + I @ LO

Example: $\mathrm{H}^{0} \rightarrow \mathrm{~b} \overline{\mathrm{~b}}$

Born + Shower

$\left(\left.\right|^{2}\left(\boldsymbol{+} g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]+\ldots\right)\right.$

Born + I @ LO

Example: $\mathrm{H}^{0} \rightarrow \mathrm{~b} \mathrm{\bar{b}}$

Born + Shower

Born + I @ LO

Total Overkill to add these two. All I really need is just that $\boldsymbol{+ 2}$...

Adding Calculations

Born \times Shower

(see lecture 3)

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

Shower Approximation

X+I @ LO

(with PT cutoff, see lecture 2)

$$
\begin{array}{lll}
X+I^{(2)} & \cdots \\
X+I^{(1)} & X+2^{(1)} & X+3^{(1)} \\
X+I^{(0)} & X+2^{(0)} & X+3^{(0)}
\end{array}
$$

Fixed-Order ME above Pt cut \& nothing below

Adding Calculations

Born \times Shower

(see lecture 3)

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

Shower Approximation

X+I @ LO × Shower
(with PT cutoff, see lecture 2)

$X+I^{(2)}$	\cdots		
$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\cdots
$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\cdots

Fixed-Order ME above PT cut \& nothing below

Shower approximation above PT cut \& nothing below

\rightarrow Double Counting

Born \times Shower + (X+I) \times shower

Interpretation

- A (Complete Idiot's) Solution - Combine

1. $[X]_{\text {ME }}+$ showering
2. $[\mathrm{X}+1 \text { jet }]_{\text {ME }}+$ showering
3. ...

- Doesn't work
- $[X]+$ shower is inclusive
- $[X+1]+$ shower is also inclusive

Cures

Tree-Level Matrix Elements PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...) UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

Tree-Level Matrix Elements PHASE-SPACE SLICING (а..а. CKKw, MLM, ...) UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

NLO Matrix Elements
SUBTRACTION (a.k.a.MC@NLO)
UNITARITY + SUBTRACTION (a.k.a. POWHEG,VINCIA)

Cures

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. merging, PYTHIA,VINCIA, ...)

	${ }^{\times}$		
	${ }^{\times}$	${ }_{\text {212 }} \times$	${ }_{\text {r3u }} \times$
som	¢		

+ WORK IN PROGRESS ...

NLO + multileg tree-level matrix elements
NLO multileg matching
Matching at NNLO

Cures

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. merging, PYTHIA,VINCIA, ...)

+ WORK IN PROGRESS ...

NLO + multileg tree-level matrix elements
NLO multileg matching
Matching at NNLO

Phase-Space Slicing Matching to Tree-Level Matrix Elements
A.K.A. CKKW, CKKW-L, MLM

Phase Space Slicing

(with "matching scale")

Born \times Shower

+ shower veto above Рт

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

Shower Approximation

X+I @ LO × Shower
with I jet above PT

$$
X+I^{(2)}
$$

$$
X+1^{(1)} \quad X+2^{(1)} \quad X+3^{(1)}
$$

$$
X+I^{(0)} \quad X+2^{(0)} \quad X+3^{(0)}
$$

Fixed-Order ME above Pt cut \& nothing below

Phase Space Slicing

(with "matching scale")

Born \times Shower + X+I @ LO \times Shower

+ shower veto above PT
with I jet above PT

Fixed-Order Matrix Element

Shower Approximation

Fixed-Order ME above pt cut \& nothing below

Fixed-Order ME above pt cut \& Shower Approximation below

Multi-Leg Slicing

(a.k.a. CKKW or MLM matching)

Keep going

Veto all shower emissions above "matching scale"
Except for the highest-multiplicity matrix element (not competing with anyone)

Multileg				
Tree-level				
matching:				
$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots
LO: when all jets hard				
SL: for soft emissions				

Classic Example

mcplots.cern.ch

W + Jets

Number of jets in $\mathrm{pp} \rightarrow \mathrm{W}+X$ at the LHC From 0 (W inclusive) to W+3 jets

PYTHIA includes matching up to $\mathrm{W}+\mathrm{I}$ jet + shower

With ALPGEN, also the LO matrix elements for 2 and 3 jets are included But Normalization still only LO

Classic Example

W + Jets

Number of jets in $\mathrm{pp} \rightarrow \mathrm{W}+X$ at the LHC From 0 (W inclusive) to W+3 jets

PYTHIA includes matching up to $\mathrm{W}+\mathrm{I}$ jet + shower

With ALPGEN, also the LO matrix elements for 2 and 3 jets are included But Normalization still only LO

Slicing: Some Subtleties

Choice of slicing scale (=matching scale)

Fixed order must still be reliable when regulated with this scale
\rightarrow matching scale should never be chosen more than \sim one order of magnitude below hard scale.

Precision still "only" Leading Order

Choice of Renormalization Scale

We already saw this can be very important (and tricky) in multi-scale problems.

Caution advised (see also supplementary slides \& lecture notes)

Choice of Matching Scale

\rightarrow A scale of 20 GeV for a W boson becomes 40 GeV for something weighing $2 \mathrm{M}_{\mathrm{W}}$, etc ... (+ adjust for $\mathrm{C}_{\mathrm{A}} / C_{F}$ if g-initiated)
\rightarrow The matching scale should be written as
a ratio (Bjorken scaling)
Reminder: in perturbative region, QCD is approximately scale invariant

Using a too low matching scale \rightarrow everything just becomes highest ME

Caveat emptor: showers generally do not include helicity correlations

Phase-Space Slicing: SPEED

Here's what it costs

Subtraction Matching to Born+NLO Matrix Elements

Showers vs NLO

X @ LO + Shower

Unitarity

X @ NLO

Showers vs NLO

X @ LO + Shower

X @ NLO

MC@NLO: Subtraction

LO \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

NLO

MC@NLO: Subtraction

Born \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

Shower Approximation

NLO = Showernlo

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Expand shower approximation to NLO analytically, then subtract:

MC@NLO: Subtraction

Born \times Shower

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element

Shower Approximation

| \ldots
 Fixed-Order Matrix Element
 \ldots Shower Approximation |
| :---: | :---: |

(NLO - Showernlo) \times

 Shower| $X^{(1)}$ | $X^{(1)}$ | \ldots | | |
| :---: | :---: | :---: | :---: | :---: |
| $X^{(1)}$ | $X^{(1)}$ | $X^{(1)}$ | $X^{(1)}$ | \cdots |
| Born | $X^{+} I^{(0)}$ | $X^{(1)}$ | $X^{(1)}$ | \cdots |

MC@NLO : Subtraction

Combine \rightarrow MC@NLO Frixione, Webber., HEP 0206 (2002) 029

Consistent NLO + parton shower (though correction events can have w<0) Recently, has been almost fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP I202 (20I2) 048

NLO: for X inclusive
LO for $\mathrm{X}+\mathrm{I}$
LL: for everything else

w < 0 are a problem because they kill efficiency:
E.g, I000 positive-weight - 999 negative-weight \rightarrow statistical precision of I event, for 2000 generated

POWHEG/PYTHIA/VINCIA

Born \times Shower

$\left(\left.\right|^{2}\left(\boldsymbol{+} g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right]+\ldots\right)\right.$

Born + I @ LO

POWHEG/PYTHIA/VINCIA

Born \times Shower

Born + I @ LO

\rightarrow Use freedom to choose finite terms
Use process-dependent radiation functions \rightarrow absorb real correction

POWHEG/PYTHIA/VINCIA

POWHEG/PYTHIA/VINCIA

Born \times First-Order Corrected Shower

POWHEG/PYTHIA/VINCIA

Born \times First-Order Corrected Shower

Born + I @ LO

POWHEG/PYTHIA/VINCIA

Born \times First-Order Corrected Shower

Born + I @ LO

\rightarrow Use freedom to choose finite terms
Use process-dependent radiation functions \rightarrow absorb real correction

Combine w subtracted NLO \rightarrow POWHEG

Nason, JHEP 04II (2004) 040

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

\ldots Fixed-Order Matrix Element
Shower Approximation

Use exact (process-dependent) splitting function for first splitting(s)

POWHEG

Combine w subtracted NLO \rightarrow POWHEG

Nason, JHEP 04II (2004) 040

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Fixed-Order Matrix Element
...
Shower Approximation

$X^{(2)}$	$X+I^{(2)}$	\ldots		
$X^{(1)}$	$X+I^{(1)}$	$X+2^{(1)}$	$X+3^{(1)}$	\ldots
Born	$X+I^{(0)}$	$X+2^{(0)}$	$X+3^{(0)}$	\ldots

Use exact (process-dependent) splitting function for first splitting(s)

Fixed-Order ME minus Shower Approximation (usually positive)

Classic Example

Classic Examplé

The Problem

Tree-level matching (slicing: CKKW, MLM)
Good for generating Born + several hard jets + shower But normalization remains LO

NLO matching (MC@NLO or POWHEG)
Good for generating NLO Born + shower
But only has LO precision for Born +1 jet
Remains pure shower for Born + more jets
ME-PS matching \rightarrow ONE calculation to rule them all? Things got better, but still have to choose :(

The Best of Both?

Ideal:

Generate entire perturbative series
Use all available NLO amplitudes
When you run out of NLO amplitudes, use LO ones
When you run out of LO amplitudes, use pure shower

The Best of Both?

Ideal:

Generate entire perturbative series
Use all available NLO amplitudes
When you run out of NLO amplitudes, use LO ones
When you run out of LO amplitudes, use pure shower

Yes!

Use parton shower algorithm as phase-space generator
Knows about singular structure of QCD, so gets dominant approximately right
Use exact amplitudes as radiation kernels
Until you run out of amplitudes

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level
$\left|M_{F}\right|^{2}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

QCD

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(201I)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(201I)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(201I)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

VINCIA: Markovian PQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(201I)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

VINCIA: Markovian PQCD

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

Markov+Unitarity: SPEED

(Why I believe Markov + unitarity is the method of choice for complex problems)

Initialization Time
(seconds)

Efficient Matching with Sector Showers
J. Lopez-Villarejo \& PS :JHEP IIII (20II) I50

Time to Generate $1000 \mathrm{Z} \rightarrow \mathrm{qq}$ showers (seconds)

$$
\mathrm{Z} \rightarrow \underset{\text { gfortran } / g^{++} \text {with gcc v.4.4-02 on single } 3.06 \mathrm{GHz} \text { processor with } 4 \mathrm{~GB} \text { memory }}{ }
$$

Approaches on the Market

QCD

Lecture

Approaches on the Market

Hw/Py standalone

$\left.\right|^{\text {st }}$ order matching for many processes, especially resonance decays

Approaches on the Market

Hw/Py standalone

${ }^{\text {st }}$ order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers
NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

Approaches on the Market

Hw/Py standalone

${ }^{\text {st }}$ order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers
NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp $+\mathrm{Py} / \mathrm{Hw}$

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Approaches on the Market

Hw/Py standalone

${ }^{\text {st }}$ order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers
NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp $+\mathrm{Py} / \mathrm{Hw}$

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Sherpa
 CKKW-slicing + CS-dipole showers

Approaches on the Market

Hw/Py standalone

$\left.\right|^{\text {st }}$ order matching for many processes, especially resonance decays

Ariadne

CKKW-L-slicing + Lund-dipole showers

Alpgen + Hw/Py

MLM-slicing + HW or PY showers
NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp $+\mathrm{Py} / \mathrm{Hw}$

MadGraph + Hw/Py

MLM-sicicing + HW or PY showers

Sherpa
 CKKW-slicing + CS-dipole showers

Approaches on the Market

Hw/Py standalone

$\left.\right|^{\text {st }}$ order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers
NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

MadGraph + Hw/Py

MLM-sicicing + HW or PY showers

Sherpa
 CKKW-silicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

MC@NLO

NLO with subtraction, $\sim 10 \%$ w<0

+ Herwig showers

Approaches on the Market

Hw/Py standalone

$\left.\right|^{\text {st }}$ order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers
NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp $+\mathrm{Py} / \mathrm{Hw}$

MadGraph + Hw/Py

MLM-sicicing + HW or PY showers

Sherpa

CKKW-sicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

MC@NLO

NLO with subtraction, $\sim 10 \%$ w<0

+ Herwig showers

POWHEG

NLO with unitarity; 0% w<0

+ "truncated" showers + HW or PY

Approaches on the Market

Hw/Py standalone

$\left.\right|^{\text {st }}$ order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers
NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp $+\mathrm{Py} / \mathrm{Hw}$

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Sherpa

CKKW-slicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

MC@NLO

NLO with subtraction, $\sim 10 \%$ w<0

+ Herwig showers

POWHEG

NLO with unitarity; 0% w<0

+ "truncated" showers + HW or PY

VINCIA + Py
 (Still only for Final State)

NLO + multileg with unitarity

+ dipole-antenna showers

Matching: Summary

$$
\begin{array}{l|l}
\text {-f. Shower off } X \\
\text { already contains } \mathrm{LL} \\
\text { part of all } X+n
\end{array} \quad \mathrm{~d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \text { •f. } \begin{aligned}
& \text { Adding back full ME } \\
& \text { for } X+n \text { would be } \\
& \text { overkill }
\end{aligned}
$$

HERWIG: Seymour, CPC 90 (I995) 95 ALPGEN, MADGRAPH: MLM
SHERPA: CKKW, JHEP OIII (200I) 063 ARIADNE: Lönnblad, JHEP 0205 (2002) 046

Good for generating Born + several hard jets + shower

Matching: Summary

$$
\begin{array}{l|l}
\text {-S. Shower off } X \\
\text { already contains LL } \\
\text { part of all } X+n
\end{array} \quad \mathrm{~d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \text { •f. } \begin{aligned}
& \text { Adding back full ME } \\
& \text { for } X+n \text { would be } \\
& \text { overkill }
\end{aligned}
$$

Solution I:"Slicing" (most widespread)

HERWIG: Seymour, CPC 90 (I995) 95 ALPGEN, MADGRAPH: MLM
SHERPA: CKKW, JHEP OIII (2001) 063
ARIADNE: Lönnblad, JHEP 0205 (2002) 046
Add event samples. Use ME above Ptmatch and PS below it

$$
\begin{array}{ll}
w_{X}=\left|M_{X}\right|^{2} & + \text { Shower } \times \text { Veto above } p_{\text {Tmatch }} \\
w_{X+m<n}=\left|M_{X+1}\right|^{2} \times \Delta_{X+1} & + \text { Shower } \times \text { Veto above } p_{\text {Tmatch }} \\
w_{X+n}=\left|M_{X+n}\right|^{2} \times \Delta_{X+n} & + \text { Shower }
\end{array}
$$

HERWIG: for X+I @ LO (Used to populate dead zone of angular-ordered shower)
CKKW \& MLM : for all X+n @ LO (with n up to 3-4) SHERPA (CKKW), ALPGEN (MLM + HW/PY), MADGRAPH (MLM + HW/PY), PYTHIA8 (CKKW-L from LHE files), ...

Good for generating Born + several hard jets + shower

Matching: Summary

$$
\begin{array}{l|l}
\text { - } \text { S. Shower off } X \\
\text { already contains LL } \\
\text { part of all } X+n
\end{array} \quad \mathrm{~d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \quad \begin{gathered}
\text { •令. } \begin{array}{l}
\text { Adding back full ME } \\
\text { for } X+n \text { would be } \\
\text { overkill }
\end{array}
\end{gathered}
$$

Solution 2: "Subtraction" (for NLO)
Frixione-Webber (MC@NLO),JHEP 0206 (2002) 029 + many more recent ...

Good for generating NLO Born + shower

Matching: Summary

- S. Shower off X already contains LL part of all $X+n$

$$
\mathrm{d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
$$

- §. Adding back full ME for $X+n$ would be overkill

Solution 2: "Subtraction" (for NLO)
Add event samples, with modified weights

$$
\begin{array}{ll}
w_{X}=\left|M_{X}\right|^{2}\left(1+\left(N L O-\text { Shower }\left\{w_{X}\right\}\right)\right) & + \text { Shower } \\
w_{X+1}=\left|M_{X+1}\right|^{2}-\text { Shower }\left\{w_{X}\right\} & + \text { Shower }
\end{array}
$$

MC@NLO: for $\mathrm{X}+\mathrm{I}$ @ LO and $\mathrm{X} @ \mathrm{NLO}$ (note: correction can be negative) aMC@NLO: for X+I @ LO and X @ NLO (note: correction can be negative)

Good for generating NLO Born + shower

Matching: Summary

$$
\begin{array}{l|l}
\text { - } \mathfrak{\delta} \text {. Shower off } X \\
\text { already contains } \mathrm{LL} \\
\text { part of all } X+n
\end{array} \quad \mathrm{~d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}} \text { •\}. } \begin{aligned}
& \text { Adding back full ME } \\
& \text { for } X+n \text { would be } \\
& \text { overkill }
\end{aligned}
$$

Matching: Summary

$$
\begin{array}{l|l}
\text { - } \text {. } \begin{array}{l}
\text { Shower off } X \\
\text { already contains LL } \\
\text { part of all } X+n
\end{array} & \mathrm{~d} \sigma_{X+1} \sim 2 g^{2} \mathrm{~d} \sigma_{X} \frac{\mathrm{~d} s_{a 1}}{s_{a 1}} \frac{\mathrm{~d} s_{1 b}}{s_{1 b}}
\end{array}
$$

- §. Adding back full ME for $X+n$ would be overkill

Solution 3: "Unitarity"

One event sample

$$
w_{X}=\left|M_{X}\right|^{2} \quad+\text { Shower }
$$

Make a "course correction" to the shower at each order
$R_{X+1}=\left|M_{X+1}\right|^{2} /$ Shower $\left.^{\{ } w_{X}\right\}$
$R_{X+n}=\left|M_{X+n}\right|^{2} /$ Shower $\left\{w_{X+n-1}\right\}$

+ Shower
+ Shower

PYTHIA: for $\mathrm{X}+\mathrm{I}$ @ LO (for color-singlet production and ~ all SM and BSM decay processes)

VINCIA: for all $\mathrm{X}+\mathrm{n}$ @ LO and X @ NLO (only worked out for decay processes so far)

LHC@home 2.0

Test4Theory - A Virtual Atom Smasher

Additional Slides

Vetoed Parton Showers

Common (at ME level):
I. Generate one ME sample for each of σ_{n} (PTcut) (using large, fixed $\alpha_{s 0}$)
2. Use a jet algorithm (e.g., k_{T}) to determine an approximate shower history for each ME event
3. Construct the would-be shower α_{s} factor and reweight

$$
w_{n}=\operatorname{Prod}\left[\alpha_{s}\left(k_{T i}\right)\right] / \alpha_{s 0^{n}}
$$

\rightarrow "Renormalization-improved" ME weights

CKKW and CKKW-L

I. Apply Sudakov $\Delta\left(\mathrm{t}_{\text {start },}, \mathrm{t}_{\text {end }}\right)$ for each reconstructed internal line (NLL for CCKW, trial-shower for CKKW-L)
2. Accept/Reject: $w_{n} \times=\operatorname{Prod}\left[\Delta_{i}\right]$
3. Do parton shower, vetoing any emissions above cutoff

MLM

I. Do normal parton showers
2. Cluster showered event (cone)
3. Match ME partons to jets
4. If (all partons matched \&\& $n_{\text {partons }}==$ $\mathrm{n}_{\mathrm{jets}}$) Accept : Reject;

Scales: the devil in the details 1

Clean Slicing: Shower Starts at ME cutoff scale (=matching scale)

But ME cut not necessarily = shower evolution variable (even if shower ordered in PT)

Scales: the devil in the details 1

Clean Slicing: Shower Starts at ME cutoff scale (=matching scale)

But ME cut not necessarily = shower evolution variable (even if shower ordered in PT)

(a)

(b)

Scales: the devil in the details 1

Clean Slicing: Shower Starts at ME cutoff scale (=matching scale)

But ME cut not necessarily = shower evolution variable (even if shower ordered in PT)

(a)

(b)

$1^{\text {st }}$ Order: PYTHIA and POWHEG

PYTHIA

FSR: Sjöstrand \& Bengtsson, PLBI 85(I987)435, NPB289(I987)8I0
Drell-Yan: Miu \& Sjöstrand, PLB449(|999)3I3
Real Radiation:

$$
\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS}}=\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS} 1}+\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS} 2}=\frac{\sigma_{0}}{\hat{s}} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{3} \frac{\hat{s}^{2}+m_{\mathrm{W}}^{4}}{\left(\text { for } \mathrm{q}_{\left.\mathrm{W} \rightarrow \mathrm{q}^{\prime} \mathrm{W}\right)}^{\hat{u}}\right.} .
$$

Use PS as overestimate. Correct to R / B via veto:

$$
\begin{aligned}
& R_{\mathrm{qg} \rightarrow \mathrm{q}^{\prime} \mathrm{W}}(\hat{s}, \hat{t}) \underset{(+ \text { analogous for } \mathrm{qq} \rightarrow \mathrm{gW})}{=} \frac{(\mathrm{d} \hat{\sigma} / \mathrm{d} \hat{t})_{\mathrm{ME}}}{(\mathrm{~d} \hat{\sigma} / \mathrm{d} \hat{t})_{\mathrm{PS}}}=\frac{\hat{s}^{2}+\hat{u}^{2}+2 m_{\mathrm{W}}^{2} \hat{t}}{\hat{s}^{2}+2 m_{\mathrm{W}}^{2}(\hat{t}+\hat{u})} \\
& \text { Unitarity } \rightarrow \text { Modified Sudakov Factor: } \\
& \exp \left(-\int_{t}^{t_{\max }} \mathrm{d} t^{\prime} \frac{\alpha_{\mathrm{s}}\left(t^{\prime}\right)}{2 \pi} \sum_{a} \int_{x}^{1} \mathrm{~d} z \frac{x^{\prime} f_{a}\left(x^{\prime}, t^{\prime}\right)}{x f_{b}\left(x, t^{\prime}\right)} P_{a \rightarrow b c}(z)\right)
\end{aligned}
$$

Inclusive Cross Section (at fixed underlying Born variables):

$$
\text { Unitarity + no normalization correction } \rightarrow \text { remains } \sigma_{0}
$$

$\rightarrow B=\sigma_{0}=\left|M_{\text {Born }}\right|^{2}$
Cancels when normalizing to $1 / \sigma$ and integrating over Born

Note: \rightarrow tuning of standalone PYTHIA done with this matching scheme
Should be OK for POWHEG, but could give worries for MLM

$1^{\text {st }}$ Order: PYTHIA and POWHEG

PYTHIA

FSR: Sjöstrand \& Bengtsson, PLBI85(I987)435, NPB289(I987)8IO Drell-Yan: Miu \& Sjöstrand, PLB449(|999)3I3

Real Radiation:

$$
\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS}}=\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS} 1}+\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{PS} 2}=\frac{\sigma_{0}}{\hat{s}} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{3} \frac{\hat{s}^{2}+m_{\mathrm{W}}^{4}}{\hat{\left.\mathrm{f}_{\mathrm{W}} \rightarrow \mathrm{q}^{\prime} \mathrm{W}\right)}} \underset{\hat{t} \hat{u}}{ }
$$

Use PS as overestimate. Correct to R / B via veto:

$$
\begin{aligned}
& \underset{\substack{\left.\mathrm{gq} \rightarrow \mathrm{q}^{\prime} \mathrm{W}(\hat{s}, \hat{t}) \\
\text { (analogous for qq } \rightarrow \mathrm{gW}\right)}}{R_{\text {a }}}=\frac{(\mathrm{d} \hat{\sigma} / \mathrm{d} \hat{t})_{\mathrm{ME}}}{(\mathrm{~d} \hat{\sigma} / \mathrm{d})_{\mathrm{PS}}}=\frac{\hat{s}^{2}+\hat{u}^{2}+2 m_{\mathrm{W}}^{2} \hat{t}}{\hat{s}^{2}+2 m_{\mathrm{W}}^{2}(\hat{t}+\hat{u})} \\
& \text { Unitarity } \rightarrow \text { Modified Sudakov Factor: } \\
& \exp \left(-\int_{t}^{t_{\text {max }}} \mathrm{d} t^{\prime} \frac{\alpha_{\mathrm{s}}\left(t^{\prime}\right)}{2 \pi} \sum_{a} \int_{x}^{1} \mathrm{~d} z \frac{x^{\prime} f_{a}\left(x^{\prime}, t^{\prime}\right)}{x f_{b}\left(x, t^{\prime}\right)} P_{a \rightarrow b c}(z)\right)
\end{aligned}
$$

Inclusive Cross Section (at fixed underlying Born variables):

$$
\text { Unitarity + no normalization correction } \rightarrow \text { remains } \sigma_{0}
$$

$\rightarrow B=\sigma_{0}=\left|M_{\text {Born }}\right|^{2}$
Cancels when normalizing to $1 / \sigma$ and integrating over Born

Note: \rightarrow tuning of standalone PYTHIA done with this matching scheme Should be OK for POWHEG, but could give worries for MLM B. Cooper et al, arXiv: I I 09.5295

POWHEG

Nason, JHEP II(2004)040
Drell-Yan: Alioli et al., JHEP 07(2008)060

Real Radiation:

$$
R_{\substack{\bar{q}, q \\ \text { (for } \mathrm{qg} \rightarrow \mathrm{q} \text { 'W) }}}+R_{q g, \bar{q}}=\left.\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}\right|_{\mathrm{ME}}=\frac{\sigma_{0}}{\hat{s}} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{2 \pi} \frac{\hat{t}^{2}+\hat{u}^{2}+2 m_{\mathrm{W}}^{2} \hat{s}}{\hat{t} \hat{u}} \text { (using Sjöstrand's notation) }
$$

Use R/B as splitting kernels (via overestimate + veto)

(+analogous for q q $\rightarrow \mathrm{gW}$)

Unitarity \rightarrow Sudakov Factor:

(explicit formula only for final-state in org paper \rightarrow no PDF factors here)

$$
\Delta_{R}^{(\mathrm{NLO})}\left(p_{\mathrm{T}}\right)=e^{-\int d \Phi_{r} \frac{R(v, r)}{B(v)} \theta\left(k_{\mathrm{T}}(v, r)-p_{\mathrm{T}}\right)}
$$

Inclusive Cross Section (at fixed underlying Born variables): Include correction to NLO inclusive level \rightarrow becomes $\sigma_{N L O}$

$$
\begin{aligned}
\rightarrow \quad \bar{B}(v) & =B(v)+V(v) \\
& +\int(R(v, r)-C(v, r)) d \Phi_{r}
\end{aligned}
$$

Cancels when normalizing to $1 / \sigma$ and integrating over Born

μ_{R} in a matched setting (MLM)

B. Cooper et al., arXiv:I I 09.5295

If using one code for MEs and another for showering

Tree-level corrections use α_{s} from Matrix-element Generator
Virtual corrections use α_{s} from Shower Generator (Sudakov)

μ_{R} in a matched setting (MLM)

If using one code for MEs and another for showering

Tree-level corrections use α_{s} from Matrix-element Generator
Virtual corrections use α_{s} from Shower Generator (Sudakov)
Mismatch if the two do not use same Λ_{ecD} or $\boldsymbol{\alpha}_{\mathbf{s}}\left(\mathrm{m}_{\mathrm{z}}\right)$

AlpGen: can set xlclu $=\Lambda_{\mathrm{QCD}}$ since v.2.14 (default remains to inherit from PDF) Pythia 6: set common $\operatorname{PARP}(61)=\operatorname{PARP}(72)=\operatorname{PARP}(81)=\Lambda_{\mathrm{QCD}}$ in Perugia 201 I tunes

Pythia 8: use TimeShower:alphaSvalue and SpaceShower:alphaSvalue

Choice of Renormalization Scale

One-loop radiation functions contain pieces proportional to the β function (E.g.,: e+e- $\rightarrow 3$ jets, for arbitrary choice of $\mu \mathrm{R}$ (e.g., $\mu \mathrm{R}=\mathrm{mZ}$) piece from integrating quark loops over all of phase space

$$
n_{f} A_{3}^{0}\left(\ln \left(\frac{s_{23}}{\mu_{R}^{2}}\right)+\ln \left(\frac{s_{13}}{\mu_{R}^{2}}\right)\right) \quad+\text { gluon loops }
$$

Proportional to the β function (bo).
Can be absorbed by using $\mu_{R}{ }^{4}=s_{13} s_{23}=p_{T}{ }^{2} s$.

Choice of Renormalization Scale

One-loop radiation functions contain pieces proportional to

 the β function (E.g.,: e+e- $\rightarrow 3$ jets, for arbitrary choice of μR (e.g., $\mu R=m Z$) piece from integrating quark loops over all of phase space$$
n_{f} A_{3}^{0}\left(\ln \left(\frac{s_{23}}{\mu_{R}^{2}}\right)+\ln \left(\frac{s_{13}}{\mu_{R}^{2}}\right)\right) \quad+\text { gluon loops }
$$

Proportional to the β function (bo).
Can be absorbed by using $\mu_{R}{ }^{4}=s_{13} s_{23}=p_{T}{ }^{2} s$.
In an ordered shower, quark (and gluon) loop integrals are restricted by strong-ordering condition \rightarrow modified to

$$
\mu_{\mathrm{R}}=\mathrm{PT} \text { (but depends on ordering variable? Anyway, we're using pT here) }
$$

Additional logs induced by gluon loops can be absorbed by replacing Λ^{MS} by $\Lambda^{\mathrm{MC}} \sim 1.5 \Lambda^{\mathrm{MS}}$ (with mild dependence on number of flavors)

Catani, Marchesini, Webber, NPB349 (1991) 635
Remaining ambiguity \rightarrow tuning

Note 2:There are obviously still order 2 uncertainties on μ_{R}, but this is the background for the central choice made in showers

NLO Matching in 1 slide

- First Order Shower expansion

PS $\quad \int \mathrm{d} \Phi_{2} \operatorname{Borm}_{Q_{\text {had }}^{2}}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} \square \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{3}\right)\right)$

NLO Matching in 1 Slide

- First Order Shower expansion

PS $\quad \int \mathrm{d} \Phi_{2} \quad$ Born $\int_{Q_{\text {had }}^{2}}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} \square \mathrm{~L} \quad \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{3}\right)\right)$
Unitarity of shower \rightarrow 3-parton real $=\div 2$-parton "virtual"

NLO Matching in 1 Slide

- First Order Shower expansion
$\mathrm{PS} \quad \int \mathrm{d} \Phi_{2} \quad$ Born $\int_{Q_{\text {had }}^{2}}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} \mathrm{LL} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{3}\right)\right)$
Unitarity of shower $\rightarrow 3$-parton real $=$ - 2 -parton "virtual"
- 3-parton real correction ($A_{3}=\left.\left|M_{3}\right|^{2} \lambda M_{2}\right|^{2}+$ finite terms; $\left.\alpha, \beta\right)$

$$
\begin{aligned}
\overline{\mathrm{x}+1^{(0)}} & =\mathrm{x}+1^{(0)}-\left(\frac{\mathrm{x}+1^{(0)}}{\mathrm{Born}}+\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\right) \text { Born } \\
& =-\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\left|M_{2}^{(0)}\right|^{2}
\end{aligned}
$$

NLO Matching in 1 Slide

- First Order Shower expansion

$$
\begin{aligned}
& \text { PS } \quad \int \mathrm{d} \Phi_{2} \text { Born } \int_{Q_{\text {had }}^{2}}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} \mathrm{LL} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{3}\right)\right) \\
& \text { Unitarity of shower } \rightarrow \text { 3-parton real = - 2-parton "virtual" }
\end{aligned}
$$

- 3-parton real correction $\left(A_{3}=\left|M_{3}\right|^{2} /\left|M_{2}\right|^{2}+\right.$ finite terms; $\left.\alpha, \beta\right)$

$$
=-\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\left|M_{2}^{(0)}\right|^{2}
$$

Finite terms cancel in 3-parton O

NLO Matching in 1 Slide

- First Order Shower expansion

PS

$$
\begin{aligned}
& \mathrm{S} \quad \int \mathrm{~d} \Phi_{2} \mathrm{Born}^{s} \int_{Q_{\mathrm{had}}^{2}}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} \frac{\mathrm{LL}}{} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{3}\right)\right) \\
& \text { Unitarity of shower } \rightarrow \text { 3-parton real }=\text { - 2-parton "virtual" }
\end{aligned}
$$

- 3-parton real correction $\left.\left(A_{3}=\left|M_{3}\right|^{2}\right\rangle M_{2}\right|^{2}+$ finite terms; $\left.\alpha, \beta\right)$

$$
=-\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\left|M_{2}^{(0)}\right|^{2} \quad \square
$$

Finite terms cancel in 3-parton O

- 2-parton virtual correction (same example)

$$
\begin{aligned}
\mathrm{X}^{(1)} & =\frac{\mathrm{X}^{(1)}}{}+\operatorname{Borm}_{0}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} \mathrm{~L}+\int_{0}^{Q_{\text {had }}^{2}} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} \mathrm{x+10} \\
& =\frac{\alpha_{s} \hat{C}_{F}}{2 \pi}\left(2 I_{q \bar{q}}^{(1)}(\epsilon, s)-4-2 I_{q \bar{q}}^{(1)}(\epsilon, s)+\frac{19+\alpha+\frac{2}{3} \beta}{4}\right) \text { Born }
\end{aligned}
$$

$$
=\frac{\alpha_{s}}{\pi}\left(1+\frac{1}{3}\left(\alpha+\frac{2}{3} \beta\right)\right) \quad \text { Born } \quad \Rightarrow
$$

Finite terms cancel in 2-

NLO Matching in 1 Slide

- First Order Shower expansion

PS

$$
\int \mathrm{d} \Phi_{2}\left|M_{2}^{(0)}\right|^{2} \int_{Q_{\mathrm{had}}^{2}}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} A_{q \bar{q}}(\ldots) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{3}\right)\right)
$$

Unitarity of shower \rightarrow 3-parton real $=$ 2-parton "virtual"

- 3-parton real correction ($\left.A_{3}=\left|M_{3}\right|^{2}\right\rangle\left\langle\left. M_{2}\right|^{2}+\right.$ finite terms; α, β)

$$
w_{3}^{(R)}=\left|M_{3}^{(0)}\right|^{2}-\left(A_{3}^{0}(\ldots)+\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\right)\left|M_{2}^{(0)}\right|^{2}
$$

$$
=-\frac{4 \pi \alpha_{s} \hat{C}_{F}}{s}\left(\alpha+\beta \frac{s_{a r}+s_{r b}}{s}\right)\left|M_{2}^{(0)}\right|^{2} \quad \longmapsto
$$

Finite terms cancel in 3-parton O

- 2-parton virtual correction (same example)

$$
\begin{aligned}
w_{2}^{(V)} & =2 \operatorname{Re}\left[M_{2}^{(1)} M_{2}^{(0) *}\right]+\left|M_{2}^{(0)}\right|^{2} \int_{0}^{s} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} A_{q \bar{q}}(\ldots)+\int_{0}^{Q_{\text {had }}^{2}} \frac{\mathrm{~d} \Phi_{3}}{\mathrm{~d} \Phi_{2}} w_{3}^{(R)} \\
& =\frac{\alpha_{s} \hat{C}_{F}}{2 \pi}\left(2 I_{q \bar{q}}^{(1)}(\epsilon, s)-4-2 I_{q \bar{q}}^{(1)}(\epsilon, s)+\frac{19+\alpha+\frac{2}{3} \beta}{4}\right)\left|M_{2}^{(0)}\right|^{2}
\end{aligned}
$$

$$
=\frac{\alpha_{s}}{\pi}\left(1+\frac{1}{3}\left(\alpha+\frac{2}{3} \beta\right)\right)\left|M_{2}^{(0)}\right|^{2} \quad \square \quad \text { Finite terms cancel in 2- }
$$

