Matching at LO and NLO

Introduction to QCD - Lecture 4

P. Skands (CERN)

The Problem

Lecture 2 : Matrix elements are correct

When all jets are hard and there are no hierarchies (single-scale problem = small corner of phase space, but an important one!) But they are unpredictive for strongly ordered emissions

Lecture 3 : Parton Showers are correct

When all emissions are (successively) strongly ordered (= dominant QCD structures)

But they are unpredictive for hard jets

Often too soft (but not guaranteed! Can also err by being too hard!)

ME-PS matching \rightarrow ONE calculation to rule them all

QCD

Born + Shower

to Born + I

QCD

Born + Shower

Born + I @ LO

QCD Lecture

IV

Born + Shower

$$\left| \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \right|^{2} \left(\begin{array}{c} \mathbf{1} + g_{s}^{2} 2C_{F} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] + \ldots \right)$$

Born + I @ LO

$$\left| \begin{array}{c} ---- \\ ---- \\ \end{array} \right|^{2} \left(\begin{array}{c} g_{s}^{2} 2C_{F} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \end{array} \right)$$

QCD

Born + Shower

$$\left| \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \right|^{2} \left(\begin{array}{c} \mathbf{1} + g_{s}^{2} 2C_{F} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] + \ldots \right)$$

Born + I @ LO

$$\left| \begin{array}{c} & \\ & \\ & \\ & \\ & \end{array} \right|^{2} \left(\begin{array}{c} g_{s}^{2} 2C_{F} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \right)$$

Total Overkill to add these two. All I really need is just that +2 ...

Adding Calculations

Born × Shower

(see lecture 3)

X+I @ LO (with pT cutoff, see lecture 2)

QCD Lecture

IV

Adding Calculations

Born × Shower

(see lecture 3)

. . .

X+I @ LO × Shower (with p_T cutoff, see lecture 2)

& nothing below

 $X^{(2)}$ X+I⁽²⁾ $X + I^{(2)}$ $X^{(1)}$ X+I⁽¹⁾ X+2⁽¹⁾ X+3⁽¹⁾ $X+I^{(1)}$ $X+2^{(1)}$ $X+3^{(1)}$ Born $X+I^{(0)}$ $X+2^{(0)}$ $X+3^{(0)}$ $X+1^{(0)}$ $X+2^{(0)}$ $X+3^{(0)}$ Fixed-Order ME above pT cut Fixed-Order Matrix Element & nothing below Shower approximation above pT cut Shower Approximation

. . .

Double Counting

Born × Shower + (X+I) × shower

Fixed-Order Matrix Element

Shower Approximation

Double counting above p_T cut & shower approximation below

Interpretation

► A (Complete Idiot's) Solution – Combine

1. $[X]_{ME}$ + showering 2. $[X + 1 \text{ jet}]_{ME}$ + showering 3. ...

Doesn't work

- [X] + shower is inclusive
- [X+1] + shower is also inclusive

Combine everything into one sample

Lecture IV

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

 X(2)
 X
+1(2) ...
 Image: Constraint of the second sec

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

Cures

X ⁽²⁾	X +1 ⁽²⁾			
X ⁽¹⁾	X + ^(I)	X +2 ⁽¹⁾	X +3 ⁽¹⁾	
Born	X +1 ⁽⁰⁾	X +2 ⁽⁰⁾	X +3 ⁽⁰⁾	

X +2⁽¹⁾

X +3⁽¹⁾

9

QCD

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

+ WORK IN PROGRESS ...

NLO + multileg tree-level matrix elements

- NLO multileg matching
- Matching at NNLO

Cures

X ⁽²⁾	X + ⁽²⁾			
X ⁽¹⁾	X +1 ⁽¹⁾	X +2 ⁽¹⁾	X +3 ⁽¹⁾	
Born	X + ⁽⁰⁾	X +2 ⁽⁰⁾	X +3 ⁽⁰⁾	

Lecture

Matching at NNLO

Tree-Level Matrix Elements

PHASE-SPACE SLICING (a.k.a. CKKW, MLM, ...)

UNITARITY (a.k.a. merging, PYTHIA, VINCIA, ...)

NLO Matrix Elements

SUBTRACTION (a.k.a. MC@NLO)

UNITARITY + SUBTRACTION (a.k.a. POWHEG, VINCIA)

Cures

+ WORK IN PROGRESS ...

- NLO + multileg tree-level matrix elements
- NLO multileg matching

X X X +1⁽¹⁾ +2⁽¹⁾ +3⁽¹⁾

X X X +1⁽⁰⁾ +2⁽⁰⁾ +3⁽⁰⁾

Born

X ⁽²⁾	X +1 ⁽²⁾			
X ⁽¹⁾	X +1 ⁽¹⁾	X +2 ⁽¹⁾	X +3 ⁽¹⁾	
Born	X +1 ⁽⁰⁾	X +2 ⁽⁰⁾	X +3 ⁽⁰⁾	

Phase-Space Slicing Matching to Tree-Level Matrix Elements

A.K.A. CKKW, CKKW-L, MLM

Phase Space Slicing

(with "matching scale")

Born × Shower

+ shower veto above pT

X+I @ LO × Shower

with I jet above pT

Lecture

IV

Phase Space Slicing

(with "matching scale")

Born × Shower +

+ shower veto above pT

X+I @ LO × Shower

with I jet above p_T

X+1 now correct in both soft and hard limits

X ⁽²⁾	X+I ⁽²⁾			
X (I)	X+I ^(I)	X+2 ^(I)	X+3 ^(I)	•••
Born	X+I ⁽⁰⁾	X+2 ⁽⁰⁾	X+3 ⁽⁰⁾	•••

Fixed-Order Matrix Element

Shower Approximation

Fixed-Order ME above p_T cut & nothing below

Fixed-Order ME above p_T cut & Shower Approximation below

Multi-Leg Slicing

(a.k.a. CKKW or MLM matching)

Keep going

CKKW: Catani, Krauss, Kuhn, Webber, JHEP 0111:063,2001.

MLM: Michelangelo L Mangano

Veto all shower emissions above "matching scale"

Except for the highest-multiplicity matrix element (not competing with anyone)

Multileg Tree-level matching:

X ⁽²⁾	X+I ⁽²⁾			
X ⁽¹⁾	X+I ^(I)	X+2 ^(I)	X+3 ^(I)	••
Born	X+I ⁽⁰⁾	X+2 ⁽⁰⁾	X+3 ⁽⁰⁾	•••

Precision: LO: when all jets hard Still LL: for soft emissions

QCD

Classic Example

W + Jets

- Number of jets in $pp \rightarrow W+X$ at the LHC
- From 0 (W inclusive) to W+3 jets
- PYTHIA includes matching up to W+1 jet + shower
- With ALPGEN, also the LO matrix elements for 2 and 3 jets are included But Normalization still only LO

mcplots.cern.ch

Classic Example

W + Jets

- Number of jets in $pp \rightarrow W+X$ at the LHC
- From 0 (W inclusive) to W+3 jets
- PYTHIA includes matching up to W+1 jet + shower
- With ALPGEN, also the LO matrix elements for 2 and 3 jets are included But Normalization still only LO

Slicing: Some Subtleties

Choice of slicing scale (=matching scale)

- Fixed order must still be reliable when regulated with this scale
- \rightarrow matching scale should never be chosen more than \sim one order of magnitude below hard scale.

Precision still "only" Leading Order

Choice of Renormalization Scale

- We already saw this can be very important (and tricky) in multi-scale problems.
- Caution advised (see also supplementary slides & lecture notes)

QCD Lecture

IV

Choice of Matching Scale

Reminder: in perturbative region, QCD is approximately scale invariant

→ A scale of 20 GeV for a W boson becomes 40 GeV for something weighing $2M_{VV}$, etc ... (+ adjust for C_A/C_F if g-initiated)

→ The matching scale should be written as a ratio (Bjorken scaling)
Using a too low matching scale → everything just becomes highest ME

Caveat emptor: showers generally do not include helicity correlations

Phase-Space Slicing: SPEED

Here's what it costs

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

QCD

Lecture IV

17

X ⁽²⁾	X +1 ⁽²⁾			
X ⁽¹⁾	X +1 ⁽¹⁾	X +2 ⁽¹⁾	X +3 ⁽¹⁾	
Born	X +1 ⁽⁰⁾	X +2 ⁽⁰⁾	X +3 ⁽⁰⁾	

Subtraction Matching to Born+NLO Matrix Elements

A.K.A. MC@NLO, POWHEG, VINCIA

Showers vs NLO

Lecture

IV

Showers vs NLO

QCD Lecture

IV

LO × Shower NLO

Lecture IV

Born × Shower NLO - Shower_{NLO}

$$X^{(2)}$$
 $X+1^{(2)}$... $X^{(1)}$ $X+1^{(1)}$ $X+2^{(1)}$ $X+3^{(1)}$ Born $X+1^{(0)}$ $X+2^{(0)}$ $X+3^{(0)}$...

$$X^{(2)}$$
 $X+1^{(2)}$... $X^{(1)}$ $X+1^{(1)}$ $X+2^{(1)}$ $X+3^{(1)}$...Born $X+1^{(0)}$ $X+2^{(0)}$ $X+3^{(0)}$...

Expand shower approximation to NLO analytically, then subtract:

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

QCD

Born × Shower

X ⁽²⁾	X+I ⁽²⁾			
X ⁽¹⁾	X+I ^(I)	X+2 ^(I)	X+3 ^(I)	•••
Born	X+I ⁽⁰⁾	X+2 ⁽⁰⁾	X+3 ⁽⁰⁾	•••

(NLO - Shower_{NLO}) × Shower

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Subleading corrections generated by shower off subtracted ME

Combine → MC@NLO Frixione, Webber, JHEP 0206 (2002) 029

Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been almost fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

w < 0 are a problem because they kill efficiency:

E.g, 1000 positive-weight - 999 negative-weight → statistical precision of 1 event, for 2000 generated

Born × Shower

Born + I @ LO

$$\left| \begin{array}{c} ---- \\ ---- \\ \end{array} \right|^{2} \left(\begin{array}{c} g_{s}^{2} 2C_{F} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \end{array} \right)$$

QCD

Born × Shower

$$\left| \begin{array}{c} & \\ & \\ & \\ & \\ & \end{array} \right|^{2} \left(\begin{array}{c} \mathbf{1} + g_{s}^{2} 2C_{F} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] + \ldots \right)$$

Born + I @ LO

$$\left| \begin{array}{c} ---- \\ ---- \\ \end{array} \right|^{2} \left(\begin{array}{c} g_{s}^{2} 2C_{F} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \right)$$

 \rightarrow Use freedom to choose finite terms Use process-dependent radiation functions \rightarrow absorb real correction

QCD

Lecture

IV

$$\left| \begin{array}{c} & \\ - & - & - \end{array} \right|^{2} \left(\begin{array}{c} 1 \\ + \\ g_{s}^{2} \\ 2C_{F} \end{array} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] + \end{array} \right) \right] + \ldots \right)$$

$$\left| \begin{array}{c} - - - - \end{array} \right|^{2} \left(\begin{array}{c} g_{s}^{2} 2C_{F} \left[\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \end{array} \right)$$

QCD

Born × First-Order Corrected Shower

QCD

Born × First-Order Corrected Shower

Born + I @ LO

QCD

POWHEG/PYTHIA/VINCIA

Born × First-Order Corrected Shower

Born + I @ LO

 \rightarrow Use freedom to choose finite terms Use process-dependent radiation functions \rightarrow absorb real correction QCD

Lecture

IV

25

POWHEG

Combine w subtracted NLO → POWHEG Nason, JHEP 0411 (2004) 040

Fixed-Order Matrix Element

Shower Approximation

Use exact (process-dependent) splitting function for first splitting(s)

P. Skands

QCD

POWHEG

Combine w subtracted NLO \rightarrow POWHEG Nason, JHEP 0411 (2004) 040

 $X^{(2)}$ X+I⁽²⁾ $X^{(1)} = X + I^{(1)} + X + 2^{(1)} + X + 3^{(1)}$ Born X+I⁽⁰⁾ X+2⁽⁰⁾ X+3⁽⁰⁾

Fixed-Order Matrix Element

Shower Approximation

Use exact (process-dependent) splitting function for first splitting(s)

Fixed-Order ME minus Shower Approximation (usually positive)

QCD

Classic Example

QCD

Classic Example

IV

The Problem

Tree-level matching (slicing: CKKW, MLM)

Good for generating Born + several hard jets + shower But normalization remains LO

NLO matching (MC@NLO or POWHEG)

Good for generating NLO Born + shower

But only has LO precision for Born + 1 jet

Remains pure shower for Born + more jets

ME-PS matching \rightarrow ONE calculation to rule them all? Things got better, but still have to choose :(

The Best of Both?

Ideal:

- Generate entire perturbative series
- Use all available NLO amplitudes
- When you run out of NLO amplitudes, use LO ones
- When you run out of LO amplitudes, use pure shower

IV

The Best of Both?

Ideal:

Generate entire perturbative series

Use all available NLO amplitudes

When you run out of NLO amplitudes, use LO ones

When you run out of LO amplitudes, use pure shower

Yes!

Use parton shower algorithm as phase-space generator Knows about singular structure of QCD, so gets dominant approximately right

Use exact amplitudes as radiation kernels

Until you run out of amplitudes

Giele, Kosower, PS, PRD 84 (2011) 054003 Lopez-Villarejo, PS, JHEP 1111 (2011) 150

IV

QCD

Lecture IV

QCD

Lecture IV

QCD

Start at Born level Loops $|M_{F}|^{2}$ Generate "shower" emission +2 $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ +/ $i \in ant$ **Correct to Matrix Element** +0 $a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ +0+/ +2 +3Legs Unitarity of Shower $Virtual = -\int Real$ +The VINCIA Code PYTHIA 8 VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 & CPC 178 (2008) 852

> Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

*)pQCD : perturbative QCD

QCD

Start at Born level $|M_F|^2$ Generate "shower" emission $|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$

Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$

Unitarity of Shower Virtual = $-\int \text{Real}$

Correct to Matrix Element $|M_F|^2 \rightarrow |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$

*)pQCD : perturbative QCD

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 & PRD84(2011)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 & CPC 178 (2008) 852

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements QCD

QCD

Lecture IV

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements QCD Lecture

IV

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements QCD

Lecture IV

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements QCD

Lecture IV

Note: other teams working on alternative strategies Perturbation theory is solvable \rightarrow expect improvements QCD

Lecture IV

Markov+Unitarity: SPEED

(Why I believe Markov + unitarity is the method of choice for complex problems)

Initialization Time (seconds)

5

Matched Number of Legs

Efficient Matching with Sector Showers J. Lopez-Villarejo & PS : JHEP 1111 (2011) 150

Time to Generate 1000 Z→qq showers (seconds)

Matched Number of Legs

Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

Lecture IV

0.1

QCD

Hw/Py standalone Ist order matching for many processes, especially resonance decays

QCD

Hw/Py standalone

Ist order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers

NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

QCD

Hw/Py standalone

Ist order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers

NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

QCD

Hw/Py standalone

Ist order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers

NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Sherpa

CKKW-slicing + CS-dipole showers

QCD

Hw/Py standalone

Ist order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers

NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Sherpa

CKKW-slicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

QCD

Hw/Py standalone

Ist order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers

NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Sherpa

CKKW-slicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

MC@NLO

NLO with subtraction, ~10% w<0

+ Herwig showers

QCD

Hw/Py standalone

Ist order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers

NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Sherpa

CKKW-slicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

MC@NLO

- NLO with subtraction, ~10% w<0
- + Herwig showers

POWHEG

- NLO with unitarity; 0% w<0
- + "truncated" showers + HW or PY

Hw/Py standalone

Ist order matching for many processes, especially resonance decays

Alpgen + Hw/Py

MLM-slicing + HW or PY showers

NOTE: If you just write "AlpGen" on a plot, we assume AlpGen standalone! (no showering or matching!) - very different from Alp+Py/Hw

MadGraph + Hw/Py

MLM-slicing + HW or PY showers

Sherpa

CKKW-slicing + CS-dipole showers

Ariadne

CKKW-L-slicing + Lund-dipole showers

MC@NLO

- NLO with subtraction, ~10% w<0
- + Herwig showers

POWHEG

- NLO with unitarity; 0% w<0
- + "truncated" showers + HW or PY

VINCIA + Py

(Still only for Final State)

NLO + multileg with unitarity

+ dipole-antenna showers

QCD

P. Skands

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

 Adding back full ME for X+n would be overkill

HERWIG: Seymour, CPC 90 (1995) 95 ALPGEN, MADGRAPH: MLM SHERPA: CKKW, JHEP 0111 (2001) 063 ARIADNE: Lönnblad, JHEP 0205 (2002) 046

Good for generating Born + several hard jets + shower

QCD

Lecture IV

33

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

 Adding back full ME for X+n would be overkill

Solution I: "Slicing" (most widespread) Add event samples. Use ME above ptmatch and PS below it $w_X = |M_X|^2 + Shower \times Veto above ptmatch$ $w_{X+m < n} = |M_{X+1}|^2 \times \Delta_{X+1} + Shower \times Veto above ptmatch$ $w_{X+n} = |M_{X+n}|^2 \times \Delta_{X+n} + Shower$

HERWIG: for X+1 @ LO (Used to populate dead zone of angular-ordered shower)

CKKW & MLM : for all X+n @ LO (with n up to 3-4) SHERPA (CKKW), ALPGEN (MLM + HW/PY), MADGRAPH (MLM + HW/PY), PYTHIA8 (CKKW-L from LHE files), ...

Good for generating Born + several hard jets + shower

QCD

 Adding back full ME for X+n would be overkill

Frixione-Webber (MC@NLO), JHEP 0206 (2002) 029 + many more recent ...

Good for generating NLO Born + shower

QCD Lecture

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

 Adding back full ME for X+n would be overkill

Solution 2: "Subtraction" (for NLO) Add event samples, with modified weights $w_X = |M_X|^2 (1 + (NLO - Shower\{w_X\})) + Shower$ $w_{X+1} = |M_{X+1}|^2 - Shower\{w_X\} + Shower$

MC@NLO: for X+I @ LO and X @ NLO (note: correction can be negative) aMC@NLO: for X+I @ LO and X @ NLO (note: correction can be negative)

Good for generating NLO Born + shower

QCD

$$\mathrm{d}\sigma_{X+1} \sim 2g^2 \mathrm{d}\sigma_X \frac{\mathrm{d}s_{a1}}{s_{a1}} \frac{\mathrm{d}s_{1b}}{s_{1b}}$$

 Adding back full ME for X+n would be overkill

Bengtsson-Sjöstrand (Pythia), PLB 185 (1987) 435 + more Bauer-Tackmann-Thaler (GenEva), JHEP 0812 (2008) 011 Giele-Kosower-Skands (Vincia), PRD84 (2011) 054003

QCD

 Adding back full ME for X+n would be overkill

QCD

LHC@home 2.0

Test4Theory - A Virtual Atom Smasher

Helping to crunch numbers for the mcplots.cern.ch web site Next large calculation attempt: NNLO top pair production

Additional Slides

Vetoed Parton Showers

(used in Phase Space Slicing, a.k.a. CKKW or MLM matching)

Common (at ME level):

- I. Generate one ME sample for each of $\sigma_n(p_{Tcut})$ (using large, fixed α_{s0})
- 2. Use a jet algorithm (e.g., k_T) to determine an approximate shower history for each ME event
- 3. Construct the would-be shower α_s factor and reweight

 $w_n = Prod[\alpha_s(k_{Ti})]/\alpha_{s0}^n$

→ "Renormalization-improved" ME weights

CKKW and CKKW-L

- I. Apply Sudakov $\Delta(t_{start}, t_{end})$ for each reconstructed internal line (NLL for CCKW, trial-shower for CKKW-L)
- 2. Accept/Reject: $w_n \times = Prod[\Delta_i]$
- 3. Do parton shower, vetoing any emissions above cutoff

MLM

- I. Do normal parton showers
- 2. Cluster showered event (cone)
- 3. Match ME partons to jets
- 4. If (all partons matched && n_{partons} == n_{jets}) Accept : Reject;

QCD

Lecture

Scales: the devil in the details 1

Clean Slicing: Shower **Starts** at ME **cutoff** scale (=matching scale)

But ME cut not necessarily = shower evolution variable (even if shower ordered in p_T)

QCD

Scales: the devil in the details 1

Clean Slicing: Shower **Starts** at ME **cutoff** scale (=matching scale)

But ME cut not necessarily = shower evolution variable (even if shower ordered in p_T)

QCD

Scales: the devil in the details 1

Clean Slicing: Shower **Starts** at ME **cutoff** scale (=matching scale)

But ME cut not necessarily = shower evolution variable (even if shower ordered in p_T)

QCD

1st Order: PYTHIA and POWHEG

PYTHIA

Note: → tuning of standalone PYTHIA done with this matching scheme Should be OK for POWHEG, but could give worries for MLM B. Cooper et al, arXiv:1109.5295

IV

1st Order: PYTHIA and POWHEG

PYTHIA

Note: → tuning of standalone PYTHIA done with this matching scheme Should be OK for POWHEG, but could give worries for MLM B. Cooper et al, arXiv:1109.5295

POWHEG

µ_R in a matched setting (MLM)

B. Cooper et al., arXiv: 1109.5295

If using one code for MEs and another for showering

- Tree-level corrections use α_s from Matrix-element Generator
- Virtual corrections use α_s from Shower Generator (Sudakov)

QCD Lecture

IV

μ_R in a matched setting (MLM)

B. Cooper et al., arXiv: 1109.5295

If using one code for MEs and another for showering

Tree-level corrections use α_s from Matrix-element Generator

Virtual corrections use α_s from Shower Generator (Sudakov)

Mismatch if the two do not use same Λ_{QCD} or $\alpha_s(m_z)$

Choice of Renormalization Scale

in Parton Shower

One-loop radiation functions contain pieces proportional to the β function (E.g.,: e+e- \rightarrow 3 jets, for arbitrary choice of μ R (e.g., μ R= mZ) piece from integrating quark loops over all of phase space

Nf
$$A_3^0 \left(\ln \left(\frac{s_{23}}{\mu_R^2} \right) + \ln \left(\frac{s_{13}}{\mu_R^2} \right) \right)$$
 + gluon loops

Proportional to the β function (b₀).

Can be absorbed by using $\mu_R^4 = s_{13} s_{23} = p_T^2 s$.

Choice of Renormalization Scale

in Parton Shower

One-loop radiation functions contain pieces proportional to the β function (E.g.,: e+e- \rightarrow 3 jets, for arbitrary choice of μ R (e.g., μ R= mZ) piece from integrating quark loops over all of phase space

$$n_f A_3^0 \left(\ln \left(\frac{s_{23}}{\mu_R^2} \right) + \ln \left(\frac{s_{13}}{\mu_R^2} \right) \right)$$
 + gluon loops

Proportional to the β function (b₀).

Can be absorbed by using $\mu_R^4 = s_{13} s_{23} = p_T^2 s$.

In an ordered shower, quark (and gluon) loop integrals are restricted by strong-ordering condition \rightarrow modified to

 $\mu_R = p_T$ (but depends on ordering variable? Anyway, we're using pT here)

Additional logs induced by gluon loops can be absorbed by replacing Λ^{MS} by $\Lambda^{MC} \sim 1.5 \Lambda^{MS}$ (with mild dependence on number of flavors)

Catani, Marchesini, Webber, NPB349 (1991) 635

Remaining ambiguity \rightarrow tuning

Note: CMW not automatic in PYTHIA, has to be done by hand, by choosing effective Λ or $\alpha_s(M_z)$ values instead of \overline{MS} ones Note 2:There are obviously still order 2 uncertainties on μ_R , but this is the background for the central choice made in showers

QCD

Lecture

First Order Shower expansion

$$\mathsf{PS} \qquad \int \mathrm{d}\Phi_2 \quad \mathsf{Born} \quad \int_{Q^2_{had}}^s \frac{\mathrm{d}\Phi_3}{\mathrm{d}\Phi_2} \quad \mathsf{LL} \quad \delta\left(\mathcal{O} - \mathcal{O}(\{p\}_3)\right)$$

First Order Shower expansion

$$\mathsf{PS} \qquad \int \mathrm{d}\Phi_2 \quad \mathsf{Born} \quad \int_{Q^2_{\mathrm{had}}}^s \frac{\mathrm{d}\Phi_3}{\mathrm{d}\Phi_2} \quad \mathsf{LL} \quad \delta\left(\mathcal{O} - \mathcal{O}(\{p\}_3)\right)$$

Unitarity of shower → 3-parton real = ÷ 2-parton "virtual"

P. Skands

43

Lecture IV

 $= \frac{\alpha_s}{\pi} \left(1 + \frac{1}{3} \left(\alpha + \frac{2}{3} \beta \right) \right) |M_2^{(0)}|^2$

 $\implies Finite terms cancel in 2- parton O (normalization)$

QCD