P. Skands QCD Lecture III

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

Calculus: $\{A\}$ converges to B if an n exists for which $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$

Monte Carlo: $\{A\}$ converges to B if n exists for which the probability for $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$, is $>\mathrm{P}$, for any $\mathrm{P}[0<\mathrm{P}<1]$

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

Calculus: $\{A\}$ converges to B if an n exists for which $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$

Monte Carlo: $\{A\}$ converges to B if n exists for which the probability for

$$
\left|A_{i>n}-B\right|<\varepsilon, \text { for any } \varepsilon>0,
$$

"This risk, that convergence is only given with a certain probability, is inherent in Monte Carlo calculations and is the reason why this technique was named after the world's most famous gambling casino. Indeed, the name is doubly appropriate because the style of gambling in the Monte Carlo casino, not to be confused with the noisy and tasteless gambling houses of Las Vegas and Reno, is serious and sophisticated."
F. James, "Monte Carlo theory and practice",

$$
\text { is }>P \text {, for any } P[0<P<1]
$$ Rept. Prog. Phys. 43 (1980) 1145

Scattering Experiments

LHC detector
Cosmic-Ray detector Neutrino detector X-ray telescope
\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

Scattering Experiments

LHC detector
Cosmic-Ray detector Neutrino detector X-ray telescope
\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

In particle physics: Integrate over all quantum histories

Convergence

MC convergence is Stochastic!

$$
\frac{1}{\sqrt{n}} \text { in any dimension }
$$

Uncertainty (after \boldsymbol{n} function evaluations)	$\mathrm{n}_{\text {eval }} /$ bin	Approx Conv. Rate (in ID)	Approx Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2^{D}	$\mathrm{I} / \mathrm{n}^{2}$	$\mathrm{I} / \mathrm{n}^{2 / \mathrm{D}}$
Simpson's Rule (3-point)	3^{D}	$\mathrm{I} / \mathrm{n}^{4}$	$\mathrm{I} / \mathrm{n}^{4 / \mathrm{D}}$
\ldots m-point (Gauss rule)	m^{D}	$\mathrm{I} / \mathrm{n}^{2 \mathrm{~m}-1}$	$\mathrm{I} / \mathrm{n}^{(2 \mathrm{~m}-\mathrm{I}) / \mathrm{D}}$
Monte Carlo	I	$\mathrm{I} / \mathrm{n}^{1 / 2}$	$\mathrm{I} / \mathrm{n}^{1 / 2}$

> + many ways to optimize: stratification, adaptation, ...
> + gives "events" \rightarrow iterative solutions,
> + interfaces to detector simulation \& propagation codes

Monte Carlo Generators

Calculate Everything \approx solve $\mathrm{QCD} \rightarrow$ requires compromise!
Improve lowest-order perturbation theory, by including the 'most significant' corrections
\rightarrow complete events (can evaluate any observable you want)

Existing Approaches

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. HERWIG : Successor to EARWIG (begun in I984). Originated in coherence studies: angular ordering.
SHERPA : Begun in 2000. Originated in "matching" of matrix elements to showers: CKKW.

+ MORE SPECIALIZED: ALPGEN, MADGRAPH,ARIADNE,VINCIA,WHIZARD, MC@NLO, POWHEG, ...

PYTHIA anno 1978
 (then called JETSET)

```
LU TP 78-18
November, 1978
A Monte Carlo Program for Quark Jet
Generation
T. Sjöstrand, B. Söderberg
A Monte Carlo computer program is
presented, that simulates the
fragmentation of a fast parton into a
jet of mesons. It uses an iterative
scaling scheme and is compatible with
the jet model of Field and Feynman.
```

Note: Field-Feynman was an early fragmentation model
Now superseded by the String (in PYTHIA) and
Cluster (in HERWIG \& SHERPA) models.

PYTHIA anno 1978

(then called JETSET)

LU TP 78-18
 November, 1978

A Monte Carlo Program for Quark Jet Generation
T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates the fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note: Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG \& SHERPA) models.
gURROUTINE JETGEN(N)
COMMON /JET/ K(100,2), $P(100,5)$
COMMON /PAR/ PUD; PSI, SIGMA, CX2, EBEG; WFIN, IFLEEG
COMMON /DATA1/ MESO(7,2), CMIX (6;2), PMAS(19)
IFLSGN=(10-1FLBEG)/5
$\mathrm{W}=2 . * E B E G$
$I=0$
$I P D=0$
C. 1 FLAVOUR AND PT FOR FIRST QUARK
$I F L I=I A B S(I F L B E G)$
PHI $=6.2832 *$ RANF (0)
PY1=PT1*COS (PHI1)
PY1 P PT
$100 I=I+1$
C 2 FLAVOUR AND PT FOR NEXT ANTIOUARK
IFL $2=1+$ INT (RANF (O)/PUD)
PTZ=SIGMA*SQRT (-ALOG (RANF (O)))
PHI2 $=6.2832 *$ RANF (0)
$\mathrm{PHI} 2=6,2832 * R A N F$
$\mathrm{P} 2=9 \mathrm{~T} 2 * \cos (\mathrm{PHI})$
PYZ $=$ PT $2 * S I N(P H I 2)$
c 3 MESON FORMED SPIN ADDES ANO FLAVOUR MIXEO
$K(I, 1)=M E S O(3 *(I F L 1-1)+I F L 2, I F L S G N)$
ISPIN=INT(PSI+RANF (O))
$K(I, 2)=1+9 * \operatorname{ISPIN}+K(I: 1)$
IF $(K(I, 1) \cdot L E .6)$ GOTO 110
TMIX=RANF (D)
$K M=K(I, 1)-6+3 * I S P I N$
$K(I, 2)=8+9 * I S P I N+I N T(T M I X+C M I X(K M, 1))+I N T(T M I X+C M I X(K M, 2))$
C 4 MESON MASS FROM TABLE; PT FROM CONSTITUENTS
$110 \mathrm{P}(1,5)=\mathrm{PMAS}(K(1,2))$
$P(I, 1)=P X 1+P X 2$
PMTS $\quad \mathrm{P}(1,1) * * 2+P(1,2) * * 2+P(1,5) * * 2$
PMTS $=P(I ; 1) * * 2+P(1 ; 2) * * 2+P(1) S) * * 2$ CAVALLABLE GIVES E ANO PZ
C 5 RANDOM CHOI
$X=R A N F(B), C X 2) \quad y=1,-x * *(1, / 3$.

$P(I, 4)=(X * W+P M T S /(X * W)) / 2$.
C \& IF UNSTABLE, DECAY CHAIN INTO STABLE
$120 I P D=I P D+1$
IF (K (IPD,2). GE.8) CALL DECAY (IPO,I)
IF (IPD.LT.I.AND.I.LE, 96) GOTO 120
7 FLAVOUR AND PT OF GUARK FORMED IN PAIR WITH ANTIQUARK ABOVE
IFLI=IFL2
$P \times 1=-P \times 2$
$P Y 1=-P Y 2$
C 8 IF ENOUGH E+PZ LEFT, GO TO 2
$W=(1,-X) * W$
IF (W.GT.WFIN.AND.I.LE.95) GOTO 100
$\mathrm{N}=\mathrm{I}$
RETURN
END

PYTHIA anno 2012 (now called PYTHIA 8)
~ 80,000 lines of C++

What a modern MC generator has inside:

```
LU TP 07-28 (CPC 178 (2008) 852)
October, 2007
A Brief Introduction to PYTHIA 8.1
T. Sjöstrand, S. Mrenna, P. Skands
The Pythia program is a standard tool
for the generation of high-energy
collisions, comprising a coherent set
of physics models for the evolution
from a few-body hard process to a
complex multihadronic final state. It
contains a library of hard processes
and models for initial- and final-state
parton showers, multiple parton-parton
interactions, beam remnants, string
fragmentation and particle decays. It
also has a set of utilities and
interfaces to external programs. [...]
```

- Hard Processes (internal, semiinternal, or via Les Houches events)
- BSM (internal or via interfaces)
- PDFs (internal or via interfaces)
- Showers (internal or inherited)
- Multiple parton interactions
- Beam Remnants
- String Fragmentation
- Decays (internal or via interfaces)
- Examples and Tutorial
- Online HTML / PHP Manual
- Utilities and interfaces to external programs

(Traditional) Monte Carlo Generators

Perturbative Evolution

Hard Process

Based on small-angle singularity of accelerated charges (synchrotron radiation, semi-classical)

Leading Order, Infinite Lifetimes,

Altarelli-Parisi Splitting Kernels
Leading Logarithms, Leading Color, ...

+ Colour coherence

Factorization Scale

From Fixed to Infinite Order

Fixed Order :All resolved scales >> ^QcD AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales
We want to consider high-scale processes \rightarrow large scale differences
\rightarrow A Priori, no perturbatively calculable observables in hadron-hadron collisions

From Fixed to Infinite Order

Fixed Order :All resolved scales >> ^QCD AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales
We want to consider high-scale processes \rightarrow large scale differences

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

From Fixed to Infinite Order

Fixed Order :All resolved scales >> ^QCD AND no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales
We want to consider high-scale processes \rightarrow large scale differences

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed:All resolved scales >> Λ_{QCD} AND X Infrared Safe

Jets and Showers

Jet clustering algorithms

Map event from low resolution scale (i.e., with many partons/ hadrons, most of which are soft) to a higher resolution scale (with fewer, hard, jets)

Many soft particles

Hadronization

Jet Clustering
(Deterministic)
(Winner-takes-all)

A few hard jets

Born-level ME

Perturbative Evolution: Bremsstrahlung

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

Recall: Factorization in Soft and Collinear Limits

$$
\begin{gathered}
P(z): \text { "Altarelli-Parisi Splitting Functions" (more later) } \\
\left|M\left(\ldots, p_{i}, p_{j} \ldots\right)\right|^{2} \xrightarrow{i \| j} g_{s}^{2} \mathcal{C} \frac{P(z)}{s_{i j}}\left|M\left(\ldots, p_{i}+p_{j}, \ldots\right)\right|^{2} \\
\left|M\left(\ldots, p_{i}, p_{j}, p_{k} \ldots\right)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{2 s_{i k}}{s_{i j} s_{j k}}\left|M\left(\ldots, p_{i}, p_{k}, \ldots\right)\right|^{2} \quad \text { (moft Eikonal" : generalizes to Dipole/Antenna Functions }
\end{gathered}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X}
$$

Recall: Factorization in Soft and Collinear Limits

$$
\begin{gathered}
P(z): \text { "Altarelli-Parisi Splitting Functions" (more later) } \\
\left|M\left(\ldots, p_{i}, p_{j} \ldots\right)\right|^{2} \xrightarrow{i \| j} g_{s}^{2} \mathcal{C} \frac{P(z)}{s_{i j}}\left|M\left(\ldots, p_{i}+p_{j}, \ldots\right)\right|^{2} \\
\left|M\left(\ldots, p_{i}, p_{j}, p_{k} \ldots\right)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{2 s_{i k}}{s_{i j} s_{j k}}\left|M\left(\ldots, p_{i}, p_{k}, \ldots\right)\right|^{2} \quad \text { (mort Eikonal" : generalizes to Dipole/Antenna Functions }
\end{gathered}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

Recall: Factorization in Soft and Collinear Limits

$$
\begin{gathered}
P(z): \text { "Altarelli-Parisi Splitting Functions" (more later) } \\
\left|M\left(\ldots, p_{i}, p_{j} \ldots\right)\right|^{2} \xrightarrow{i \| j} g_{s}^{2} \mathcal{C} \frac{P(z)}{s_{i j}}\left|M\left(\ldots, p_{i}+p_{j}, \ldots\right)\right|^{2} \\
\left|M\left(\ldots, p_{i}, p_{j}, p_{k} \ldots\right)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{2 s_{i k}}{s_{i j} s_{j k}}\left|M\left(\ldots, p_{i}, p_{k}, \ldots\right)\right|^{2} \quad \text { (moft Eikonal" :generalizes to Dipole/Antenna Functions }
\end{gathered}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1}
\end{aligned}
$$

Recall: Factorization in Soft and Collinear Limits

$P(z)$: "Altarelli-Parisi Splitting Functions" (more later)

$$
\begin{aligned}
\left.\left|M\left(\ldots, p_{i}, p_{j} \ldots\right)\right|^{2} \xrightarrow{i \| j} g_{s}^{2} \mathcal{C} \frac{P(z)}{s_{i j}} \right\rvert\, & \left.M\left(\ldots, p_{i}+p_{j}, \ldots\right)\right|^{2} \\
& \text { "Soft Eikonal": generalizes to Dipole/Antenna Functions }
\end{aligned}
$$

$$
\left|M\left(\ldots, p_{i}, p_{j}, p_{k} \ldots\right)\right|^{2} \stackrel{j_{g} \rightarrow 0}{\rightarrow} g_{s}^{2} \mathcal{C} \frac{2 s_{i k}}{s_{i j} s_{j k}}\left|M\left(\ldots, p_{i}, p_{k}, \ldots\right)\right|^{2}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

Recall: Factorization in Soft and Collinear Limits
$P(z)$: "Altarelli-Parisi Splitting Functions" (more later)
$\left|M\left(\ldots, p_{i}, p_{j} \ldots\right)\right|^{2} \xrightarrow{i \| j} g_{s}^{2} \mathcal{C} \frac{P(z)}{s_{i j}}\left|M\left(\ldots, p_{i}+p_{j}, \ldots\right)\right|^{2}$
"Soft Eikonal" : generalizes to Dipole/Antenna Functions

$$
\left|M\left(\ldots, p_{i}, p_{j}, p_{k} \ldots\right)\right|^{2} \stackrel{j_{g} \rightarrow 0}{\rightarrow} g_{s}^{2} \mathcal{C} \frac{2 s_{i k}}{s_{i j} s_{j k}}\left|M\left(\ldots, p_{i}, p_{k}, \ldots\right)\right|^{2}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \ldots
\end{aligned}
$$

Recall: Factorization in Soft and Collinear Limits

$$
\begin{gathered}
P(z): \text { "Altarelli-Parisi Splitting Functions" (more later) } \\
\left|M\left(\ldots, p_{i}, p_{j} \ldots\right)\right|^{2} \xrightarrow{i \| j} g_{s}^{2} \mathcal{C} \frac{P(z)}{s_{i j}}\left|M\left(\ldots, p_{i}+p_{j}, \ldots\right)\right|^{2} \\
\left|M\left(\ldots, p_{i}, p_{j}, p_{k} \ldots\right)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{2 s_{i k}}{s_{i j} s_{j k}}\left|M\left(\ldots, p_{i}, p_{k}, \ldots\right)\right|^{2} \quad \text { (more later) }
\end{gathered}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
d \sigma_{X+1} & \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
d \sigma_{X+2} & \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} & \ldots
\end{aligned}
$$

Recall: Singularities mandated by gauge theory
Non-singular terms: up to you

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \quad \checkmark \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Recall: Singularities mandated by gauge theory Non-singular terms: up to you

$$
\begin{gathered}
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right] \\
\text { SOFT }
\end{gathered}
$$

Bremsstrahlung

Iterated factorization

Gives us an approximation to ∞-order tree-level cross sections.
Exact in singular (strongly ordered) limit.
Finite terms \rightarrow Uncertainty on non-singular (hard) radiation

Bremsstrahlung

$$
\text { For any basic process } d \sigma_{X}=\checkmark \text { (calculated process by process) }
$$

Iterated factorization

Gives us an approximation to ∞-order tree-level cross sections.
Exact in singular (strongly ordered) limit.
Finite terms \rightarrow Uncertainty on non-singular (hard) radiation

But something is not right ... Total σ would be infinite ...

Loops and Legs

Coefficients of the Perturbative Series

Loops and Legs

Coefficients of the Perturbative Series

The Resummation Idea

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \quad \checkmark \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \ldots
\end{aligned}
$$

- Interpretation: the structure evolves! (example: $\mathrm{X}=2$-jets)
- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets

The Resummation Idea

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \ldots
\end{aligned}
$$

- Interpretation: the structure evolves! (example: X = 2-jets)
- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets
- At finer resolutions \rightarrow some 2-jets migrate \rightarrow 3-jets $=\sigma_{X+1}(Q)=\sigma_{X ; i n c l}-\sigma_{X ; \operatorname{excl}}(Q)$

The Resummation Idea

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
d \sigma_{X+1} & \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
d \sigma_{X+2} & \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
d \sigma_{X+3} & \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2}
\end{aligned}
$$

- Interpretation: the structure evolves! (example: $\mathrm{X}=2$-jets)
- Take a jet algorithm, with resolution measure " Q ", apply it to your events
- At a very crude resolution, you find that everything is 2-jets
- At finer resolutions \rightarrow some 2-jets migrate \rightarrow 3-jets $=\sigma_{X+1}(Q)=\sigma_{X ; i n c l}-\sigma_{X ; \operatorname{excl}}(Q)$
- Later, some 3-jets migrate further, etc $\rightarrow \sigma_{X+n}(Q)=\sigma_{X ; i n c l}-\sum \sigma_{X+m<n ; e x c l}(Q)$

The Resummation Idea

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \ldots
\end{aligned}
$$

- Interpretation: the structure evolves! (example: $\mathrm{X}=2$-jets)
- Take a jet algorithm, with resolution measure " Q ", apply it to your events
- At a very crude resolution, you find that everything is 2-jets
- At finer resolutions \rightarrow some 2-jets migrate \rightarrow 3-jets $=\sigma_{X+1}(Q)=\sigma_{X ; i n c l}-\sigma_{X ; \operatorname{excl}}(Q)$
- Later, some 3-jets migrate further, etc $\rightarrow \sigma_{X+n}(Q)=\sigma_{X ; i n c l}-\sum \sigma_{X+m<n ; \text { excl }}(Q)$
- This evolution takes place between two scales, $\mathrm{Q}_{\mathrm{in}} \sim \mathbf{s}$ and $\mathrm{Q}_{\mathrm{end}} \sim \mathbf{Q}_{\text {had }}$

The Resummation Idea

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \ldots
\end{aligned}
$$

- Interpretation: the structure evolves! (example: $\mathrm{X}=2$-jets)
- Take a jet algorithm, with resolution measure " Q ", apply it to your events
- At a very crude resolution, you find that everything is 2-jets
- At finer resolutions \rightarrow some 2-jets migrate \rightarrow 3-jets $=\sigma_{X+1}(Q)=\sigma_{X ; i n c l}-\sigma_{X ; \operatorname{excl}}(Q)$
- Later, some 3-jets migrate further, etc $\rightarrow \sigma_{X+n}(Q)=\sigma_{X ; i n c l}-\sum \sigma_{X+m<n ; \text { excl }}(Q)$
- This evolution takes place between two scales, $\mathrm{Q}_{\mathrm{in}} \sim \mathbf{s}$ and $\mathrm{Q}_{\mathrm{end}} \sim \mathbf{Q}_{\text {had }}$
- $\sigma_{\mathrm{x} ; \text { tot }}=\operatorname{Sum}\left(\sigma_{\mathrm{x}+0,1,2,3, \ldots, \text { excl }}\right)=\operatorname{int}\left(\mathrm{d} \sigma_{\mathrm{x}}\right)$

Evolution

$$
Q \sim Q_{X}
$$

Evolution

$$
Q \sim \frac{Q_{X}}{\text { "A few" }}
$$

- Leading Order

- "Experiment"

100

Evolution

$$
Q \ll Q_{X}
$$

\square Leading Order

Cross Section Diverges

■ "Experiment"

Cross Section Remains $=$ Born (IR safe $)$ Number of Partons Diverges (IR unsafe)

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale $\left(Q_{F}\right)$
Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff $\sim I \mathrm{GeV}$) \rightarrow It's an evolution equation in Q_{F}

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale $\left(Q_{F}\right)$
Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff $\sim \mathrm{I} \mathrm{GeV}$) \rightarrow It's an evolution equation in Q_{F}

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant

$$
\frac{\mathrm{d} P(t)}{\mathrm{d} t}=c_{N}
$$

Probability to remain undecayed in the time interval $\left[t_{1}, t_{2}\right]$

$$
\begin{aligned}
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right) & =\exp \left(-c_{N} \Delta t\right) \\
& =1-c_{N} \Delta t+\mathcal{O}\left(c_{N}^{2}\right)
\end{aligned}
$$

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

(requires that the nucleus did not already decay)

Nuclear Decay

$\begin{gathered}\text { Nuclei remaining undecayed } \\ \text { after time } \mathbf{t}\end{gathered}=\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right)$

The Sudakov Factor

In nuclear decay, the Sudakov factor counts:

How many nuclei remain undecayed after a time t
Probability to remain undecayed in the time interval $\left[t_{1}, t_{2}\right]$

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

The Sudakov Factor

In nuclear decay, the Sudakov factor counts:

How many nuclei remain undecayed after a time t
Probability to remain undecayed in the time interval $\left[t_{1}, t_{2}\right]$

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

In parton showers, we may also define a
 Sudakov factor for the parton system. It counts

The probability that the parton system doesn't evolve (emit) when I run the factorization scale ($\sim /$ /time) from a high to a lower scale

Evolution probability per unit time

$$
\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

What's the evolution kernel?

Altarelli-Parisi splitting functions

Can be derived (in the collinear limit) from requiring invariance of the physical result with respect to $\mathrm{Q}_{\mathrm{F}} \rightarrow$ RGE

$$
\begin{aligned}
& \text { Altarelli-Parisi } \\
& \text { (E.g., PYTHIA) } \\
& \mathrm{d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z . \\
& P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z}, \\
& P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}, \\
& P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right), \\
& P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}, \\
& p_{b}=z p_{a} \\
& p_{c}=(1-z) p_{a} \\
& \mathrm{~d} t=\frac{\mathrm{d} Q^{2}}{Q^{2}}=\mathrm{d} \ln Q^{2} \\
& \text {... with } \mathrm{Q}^{2} \text { some measure of event/jet resolution } \\
& \text { measuring parton virtualities / formation time / ... } \\
& \text { Different models make different choices } \\
& \text { But choice is not entirely free ... }
\end{aligned}
$$

Coherence

QED: Chudakov effect (mid-fifties)

emulsion plate
reduced ionization
normal
ionization

QCD: colour coherence for soft gluon emission

\rightarrow an example of an interference effect that can be treated probabilistically
More interference effects can be included by matching to full matrix elements \rightarrow tomorrow

Coherence

QED: Chudakov effect (mid-fifties)

emulsion plate
reduced ionization
normal ionization

Approximations to Coherence:

Angular Ordering (HERWIG)
Angular Vetos (PYTHIA)
Coherent Dipoles/Antennae (ARIADNE, CS,VINCIA)

QCD: colour coherence for soft gluon emission

\rightarrow an example of an interference effect that can be treated probabilistically
More interference effects can be included by matching to full matrix elements \rightarrow tomorrow

What is t ?

\mathbf{t} : Shower Evolution Measure

~ Jet Resolution Measure
~ Sliding Factorization Scale

$$
\mathrm{d} t=\frac{\mathrm{d} Q^{2}}{Q^{2}}=\mathrm{d} \ln Q^{2}
$$

What is t ?

t : Shower Evolution Measure

~ Jet Resolution Measure
\sim Sliding Factorization Scale

$$
\mathrm{d} t=\frac{\mathrm{d} Q^{2}}{Q^{2}}=\mathrm{d} \ln Q^{2}
$$

What is t ?

t : Shower Evolution Measure

~ Jet Resolution Measure
\sim Sliding Factorization Scale

$$
\mathrm{d} t=\frac{\mathrm{d} Q^{2}}{Q^{2}}=\mathrm{d} \ln Q^{2}
$$

Antennae

Observation: the evolution kernel is responsible for generating real radiation.

\rightarrow Choose it to be the ratio of the real-emission matrix element to the Born-level matrix element
\rightarrow AP in coll limit, but also includes the Eikonal for soft radiation.

Dipole-Antennae (E.g., ARIADNE, VINCIA)
$2 \rightarrow 3$ instead of $\mathrm{I} \rightarrow 2$
(\rightarrow all partons on shell)
$\mathrm{d} \mathcal{P}_{I K \rightarrow i j k}=\frac{\mathrm{d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s} a\left(s_{i j}, s_{j k}\right)$

Antennae

Observation: the evolution kernel is responsible for generating real radiation.

\rightarrow Choose it to be the ratio of the real-emission matrix element to the Born-level matrix element
\rightarrow AP in coll limit, but also includes the Eikonal for soft radiation.
Dipole-Antennae
(E.g., ARIADNE, VINCIA)
$\mathrm{d} \mathcal{P}_{I K \rightarrow i j k}=\frac{\mathrm{d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s} a\left(s_{i j}, s_{j k}\right)$

$$
\begin{gathered}
2 \rightarrow 3 \text { instead of } \mathrm{I} \rightarrow 2 \\
(\rightarrow \text { all partons on shell })
\end{gathered}
$$

Antennae

Observation: the evolution kernel is responsible for generating real radiation.

\rightarrow Choose it to be the ratio of the real-emission matrix element to the Born-level matrix element
$\rightarrow \mathrm{AP}$ in coll limit, but also includes the Eikonal for soft radiation.

Dipole-Antennae
(E.g., ARIADNE, VINCIA)
$\mathrm{d} \mathcal{P}_{I K \rightarrow i j k}=\frac{\mathrm{d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s} a\left(s_{i j}, s_{j k}\right)$

Antennae

Observation: the evolution kernel is responsible for generating real radiation.

\rightarrow Choose it to be the ratio of the real-emission matrix element to the Born-level matrix element
\rightarrow AP in coll limit, but also includes the Eikonal for soft radiation.

$$
\mathrm{d} \mathcal{P}_{I K \rightarrow i j k}=\frac{\mathrm{d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s} a\left(s_{i j}, s_{j k}\right) \quad \begin{aligned}
& \begin{array}{c}
\text { Dipole-Antennae } \\
\text { (E.g., ARIADNE, } \rightarrow 3 \text { instead of I } \rightarrow 2 \\
(\rightarrow \text { all partons on shell) }
\end{array} \\
& a_{q \bar{q} \rightarrow q g \bar{q}}=\frac{2 C_{F}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}\right) \\
& a_{q g \rightarrow q g g}=\frac{C_{A}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}-s_{i j}^{3}\right) \\
& a_{g g \rightarrow g g g}=\frac{C_{A}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}-s_{i j}^{3}-s_{j k}^{3}\right) \\
& a_{q g \rightarrow q \bar{q}^{\prime} q^{\prime}}=\frac{T_{R}}{s_{j k}}\left(s-2 s_{i j}+2 s_{i j}^{2}\right) \\
& a_{g g \rightarrow g \bar{q}^{\prime} q^{\prime}}=a_{q g \rightarrow q \bar{q}^{\prime} q^{\prime}}
\end{aligned}
$$

Evolution \rightarrow Unitarity

\rightarrow includes both real (tree) and virtual (loop) corrections

Bootstrapped Perturbation Theory

Resummation

Bootstrapped Perturbation Theory

Resummation

The Shower Operator

$$
\text { Born }\left.\quad \frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\text {Born }}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \quad \mathrm{H}=\text { Hard process }\{\{p\} \text { partons }
$$

But instead of evaluating O directly on the Born final state, first insert a showering operator

The Shower Operator

$$
\text { Born }\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\text {Born }}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \quad \mathrm{H}=\text { Hard process }\{\}: \text { partons }
$$

But instead of evaluating O directly on the Born final state, first insert a showering operator
\quad Born

+ shower $\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\mathcal{S}}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right) \quad \begin{aligned} & \text { s : showering operator }\end{aligned}$ partons

The Shower Operator

$$
\text { Born }\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\text {Born }}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \quad \mathrm{H}=\text { Hard process }\{p\} \text { : partons }
$$

But instead of evaluating O directly on the Born final state, first insert a showering operator

$$
\begin{gathered}
\left.\quad \begin{array}{l}
\text { Born } \\
\text { + shower }
\end{array} \frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\mathcal{S}}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right) \quad \begin{array}{c}
\{p\}: \text { partons } \\
\mathrm{s}: \text { showering operator }
\end{array}
\end{gathered}
$$

Unitarity: to first order, S does nothing

$$
\mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right)=\delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right)+\mathcal{O}\left(\alpha_{s}\right)
$$

The Shower Operator

To ALL Orders

$$
\begin{aligned}
S\left(\{p\}_{X}, \mathcal{O}\right)= & \Delta\left(t_{\text {start }}, t_{\text {had }}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{X}\right)\right) \\
& -\int_{\substack{\text { "Nothing Happens" } \rightarrow \text { "Evaluate Observable" } \\
t_{\text {start }} \\
\text { "Something Happens" } \rightarrow \text { "Continue Shower" }}}^{\mathrm{d} t \frac{\mathrm{~d} \Delta\left(t_{\text {start }}, t\right)}{\mathrm{d} t} S\left(\{p\}_{X+1}, \mathcal{O}\right)}
\end{aligned}
$$

All-orders Probability that nothing happens

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right)
$$

The Shower Operator

To ALL Orders

$$
\begin{aligned}
& S\left(\{p\}_{X}, \mathcal{O}\right)=\Delta\left(t_{\text {start }}, t_{\text {had }}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{X}\right)\right) \\
& \text { "Nothing Happens" } \rightarrow \text { "Evaluate Observable" } \\
& -\int_{\substack{t_{\text {start }} \\
\text { "Something Happens" } \rightarrow \text { "Continue Shower" }}}^{t_{\text {had }}} \mathrm{d} t \frac{\mathrm{~d} \Delta\left(t_{\text {start }}, t\right)}{\mathrm{d} t} S\left(\{p\}_{X+1}, \mathcal{O}\right)
\end{aligned}
$$

All-orders Probability that nothing happens

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right)
$$

A Shower Algorithm

I. Generate Random Number, $\mathbf{R} \in[0, I]$

Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale t_{1})
Analytically for simple splitting kernels, else numerically (or by trial+veto)
$\rightarrow t$ scale for next branching

A Shower Algorithm

I. Generate Random Number, $\mathbf{R} \in[0, I]$

Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale t_{l})
Analytically for simple splitting kernels, else numerically (or by trial+veto)
$\rightarrow t$ scale for next branching

A Shower Algorithm

I. Generate Random Number, $\mathbf{R} \in[0, \mathrm{I}]$

Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale t_{1})
Analytically for simple splitting kernels, else numerically (or by trial+veto)
$\rightarrow t$ scale for next branching

2. Generate another Random Number, $\mathbf{R}_{\mathbf{z}} \in[0, \mathrm{I}]$

To find second (linearly independent) phase-space invariant Solve equation $R_{z}=\frac{I_{z}(z, t)}{I_{z}\left(z_{\max }(t), t\right)}$ for z (at scale t)

With the "primitive function" $I_{z}(z, t)=\left.\int_{z_{\min }(t)}^{z} \mathrm{~d} z \frac{\mathrm{~d} \Delta\left(t^{\prime}\right)}{\mathrm{d} t^{\prime}}\right|_{t^{\prime}=t}$

A Shower Algorithm

I. Generate Random Number, $\mathbf{R} \in[0, \mathrm{I}]$

Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale t_{1})
Analytically for simple splitting kernels, else numerically (or by trial+veto)
$\rightarrow t$ scale for next branching

2. Generate another Random Number, $\mathbf{R}_{\mathbf{z}} \in[0, I]$

To find second (linearly independent) phase-space invariant Solve equation $R_{z}=\frac{I_{z}(z, t)}{I_{z}\left(z_{\max }(t), t\right)}$ for z (at scale t)

With the "primitive function" $I_{z}(z, t)=\left.\int_{z_{\min }(t)}^{z} \mathrm{~d} z \frac{\mathrm{~d} \Delta\left(t^{\prime}\right)}{\mathrm{d} t^{\prime}}\right|_{t^{\prime}=t}$

A Shower Algorithm

I. Generate Random Number, $\mathbf{R} \in[0,1]$

Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale t_{l}) Analytically for simple splitting kernels, else numerically (or by trial+veto) $\rightarrow t$ scale for next branching

2. Generate another Random Number, $\mathbf{R}_{\mathbf{z}} \in[0, \mathrm{I}]$

To find second (linearly independent) phase-space invariant
Solve equation $R_{z}=\frac{I_{z}(z, t)}{I_{z}\left(z_{\max }(t), t\right)}$ for z (at scale t)
With the "primitive function" $I_{z}(z, t)=\left.\int_{z_{\min }(t)}^{z} \mathrm{~d} z \frac{\mathrm{~d} \Delta\left(t^{\prime}\right)}{\mathrm{d} t^{\prime}}\right|_{t^{\prime}=t}$
3. Generate a third Random Number, $\mathbf{R}_{\varphi} \in[0, \mathrm{I}]$

Solve equation $R_{\varphi}=\varphi / 2 \pi$ for $\varphi \rightarrow$ Can now do 3D branching

Ambiguities

The final states generated by the shower algorithm will depend on

1. The choice of perturbative evolution variable(s) $t^{[i]}$.
2. The choice of phase-space mapping $\mathrm{d} \Phi_{n+1}^{[i]} / \mathrm{d} \Phi_{n}$.
3. The choice of radiation functions a_{i}, as a function of the phase-space variables.
4. The choice of renormalization scale function μ_{R}.
5. Choices of starting and ending scales.

Ambiguities

The final states generated by the shower algorithm will depend on

1. The choice of perturbative evolution variable(s) $t^{[i]}$.
2. The choice of phase-space mapping $\mathrm{d} \Phi_{n+1}^{[i]} / \mathrm{d} \Phi_{n}$.
3. The choice of radiation functions a_{i}, as a function of the phase-space variables.
4. The choice of renormalization scale function μ_{R}.
5. Choices of starting and ending scales.
\rightarrow gives us additional handles for uncertainty estimates, beyond just μ_{R}

(Physics Consequences)

Subleading Issues

Hard Jet Substructure (showers approximate $\mathrm{I} \rightarrow 3$ by iterated $\mathrm{I} \rightarrow 2$, but full $\mathrm{I} \rightarrow 3$ kernels have additional structure. Iterated I $\rightarrow 2$ only works when successive emissions are strongly ordered (dominant) but not when two or more emissions happen at \sim the same scale \rightarrow hard substructure)

Pт kicks from recoil strategy (global vs local; $\mathrm{I} \rightarrow 2$ vs $2 \rightarrow 3$)

Gluon Splittings $\mathbf{g} \rightarrow \mathbf{q} \overline{\mathbf{q}}$ (less well controlled than gluon emission)

Mass Effects (example: b-jet calibration vs light-jet)

Subleading coherence (e.g., angular-ordered parton showers vs ртordered dipole ones, in particular initial-final connections...)

(Physics Consequences)

Subleading Issues

Hard Jet Substructure (showers approximate $\mathrm{I} \rightarrow 3$ by iterated $\mathrm{I} \rightarrow 2$, but full I $\rightarrow 3$ kernels have additional structure. Iterated I $\rightarrow 2$ only works when successive emissions are strongly ordered (dominant) but not when two or more emissions happen at \sim the same scale \rightarrow hard substructure)

Pт kicks from recoil strategy (global vs local; $\mathrm{I} \rightarrow 2$ vs $2 \rightarrow 3$)

Gluon Splittings $\mathbf{g} \rightarrow \mathbf{q} \overline{\mathbf{q}}$ (less $w \quad$ Current "holy grail":

Mass Effects (example: b-jet calibr

Subleading coherence (e.g., an ordered dipole ones, in particular initial

Include full higher-order splitting kernels \rightarrow will reduce all these ambiguities

Active field of research.
For now, must do our best to estimate the uncertainties.

I. Fragmentation Tuning

Perturbative: jet radiation, jet broadening, jet structure
Non-perturbative: hadronization modeling \& parameters

2. Initial-State Tuning

Perturbative: initial-state radiation, initial-final interference
Non-perturbative: PDFs, primordial k_{T}

3. Underlying-Event \& Min-Bias Tuning

Perturbative: Multi-parton interactions, rescattering
Non-perturbative: Multi-parton PDFs, Beam Remnant fragmentation, Color (re)connections, collective effects, impact parameter dependence, ...

Example: pQCD Shower Tuning

Main pQCD Parameters

$\alpha_{s}(m z)$
The value of the strong coupling at the Z pole
Governs overall amount of radiation
Renormalization Scheme and Scale for α s
I- / 2-loop running, MSbar / CMW scheme, $\mu_{\mathrm{R}} \sim \mathrm{Q}^{2}$ or PT^{2}
Additional Matrix Elements included?
At tree level / one-loop level? Using what scheme?
Subleading Logs
Ordering variable, coherence treatment, effective I $\rightarrow 3$ (or $2 \rightarrow 4$), recoil strategy, etc

Need IR Corrections?

PYTHIA 8 (hadronization off) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)
$$

Significant Discrepancies (>10\%)
for $T<0.05$, Major <0.15, Minor <0.2, and for all values of Oblateness

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad=-T-\frac{1}{2}
$$

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad=\quad 1-T-\frac{1}{2}
$$

Note: Value of Strong coupling is

$$
\alpha_{s}\left(M_{z}\right)=0.14
$$

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right)
$$

Note: Value of Strong coupling is

$$
\alpha_{s}\left(M_{z}\right)=0.12
$$

Wait ... is this Crazy?

Best result

Obtained with $\alpha_{s}\left(M_{z}\right) \approx 0.14 \neq$ World Average $=0.1176 \pm 0.0020$

Wait ... is this Crazy?

Best result

Obtained with $\alpha_{s}(M z) \approx 0.14 \neq$ World Average $=0.1176 \pm 0.0020$

Value of $\boldsymbol{\alpha}_{\mathbf{s}}$

Depends on the order and scheme
$M C \approx$ Leading Order + LL resummation
Other leading-Order extractions of $\alpha_{s} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Wait ... is this Crazy?

Best result

Obtained with $\alpha_{s}\left(M_{z}\right) \approx 0.14 \neq$ World Average $=0.1176 \pm 0.0020$

Value of $\boldsymbol{\alpha}_{\mathbf{s}}$

Depends on the order and scheme
$M C \approx$ Leading Order $+L L$ resummation
Other leading-Order extractions of $\alpha_{s} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Not so crazy

Tune/measure even pQCD parameters with the actual generator. Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

Wait ... is this Crazy?

Best result

Obtained with $\alpha_{s}\left(M_{z}\right) \approx 0.14 \neq$ World Average $=0.1176 \pm 0.0020$

Value of α_{s}

Depends on the order and scheme
$M C \approx$ Leading Order $+L L$ resummation
Other leading-Order extractions of $\alpha_{s} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$; 2-loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?

Not so crazy

Tune/measure even pQCD parameters with the actual generator.
Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

Uncertainties

J. D. Bjorken
"Another change that I find disturbing is the rising tyranny of Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The Tyranny of Carlo

J. D. Bjorken
"Another change that I find disturbing is the rising tyranny of Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The simultaneous increase in detector complexity and in computation power has made simulation techniques an essential feature of contemporary experimentation. The Monte Carlo símulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good.

The Tyranny of Carlo

J. D. Bjorken
"Another change that I find disturbing is the rising tyranny of Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The simultaneous increase in detector complexity and in computation power has made simulation techniques an essential feature of contemporary experimentation. The Monte Carlo símulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good.

But it often happens that the physics simulations provided by the the MC generators carry the authority of data itself. They look like data and feel like data, and if one is not careful they are accepted as if they were data. All Monte Carlo codes come with a GIGO (garbage in, garbage out) warning label. But the GIGO warning label is just as easy for a physicist to ignore as that little message on a packet of cigarettes is for a chain smoker to ignore. I see nowadays experimental papers that claim agreement with QCD (translation: someone's simulation labeled QCD) and/or disagreement with an alternative piece of physics (translation: an unrealistic simulation), without much evidence of the inputs into those simulations."

The Tyranny of Carlo

J. D. Bjorken
"Another change that I find disturbing is the rising tyranny of Carlo. No, I don't mean that fellow who runs CERN, but the other one, with first name Monte.

The simultaneous increase in detector complexity and in computation power has made simulation techniques an essential feature of contemporary experimentation. The Monte Carlo símulation has become the major means of visualization of not only detector performance but also of physics phenomena. So far so good.

But it often happens that the physics simulations provided by the the MC generators carry the authority of data itself. They look like data and feel like data, and if one is not careful they are accepted as if they were data. All Monte Carlo codes come with a GIGO (garbage in, garbage out) warning label. But the GIGO warning label is just as easy for a physicist to ignore as that little message on a packet of cigarettes is for a chain smoker to ignore. I see nowadays experimental papers that claim agreement with QCD (translation: someone's simulation labeled QCD) and/or disagreement with an alternative piece of physics (translation: an unrealistic simulation), without much evidence of the inputs into those simulations."

> Account for parameters + pertinent cross-checks and validations
> Do serious effort to estimate uncertainties, by salient variations

Uncertainty Estimates

a) Authors provide specific "tune variations" Run once for each variation \rightarrow envelope

PS, Phys. Rev. D82 (2010) 074018

b) One shower run

+ unitarity-based uncertainties \rightarrow envelope

Uncertainty Estimates

a) Authors provide specific "tune variations"

Run once for each variation \rightarrow envelope
PS, Phys. Rev. D82 (2010) 074018

b) One shower run

+ unitarity-based uncertainties \rightarrow envelope

Automatic Uncertainty Estimates

One shower run (VINCIA + PYTHIA)

+ unitarity-based uncertainties \rightarrow envelope

Giele, Kosower, PS; Phys. Rev. D84 (201 I) 054003

Subprocess	Code		Number of events Tried Selected Accepted				$\begin{aligned} & \text { sigma +- de7ta } \\ & \text { (estimated) (mb) } \end{aligned}$		
f fbar -> gamma*/z0		221	105			10000		$4.143 \mathrm{e}-05$	$0.000 \mathrm{e}+00$
sum			105			10000		4.143e-05	$0.000 \mathrm{e}+00$
End PYTHIA Event and Cross Section Statistics									
VINCIA Statistics									
Number of nonunity-weight events			=	none					
Number of negative-weight events			=	none					
	weight(i)		Avg Wt	Avg Dev	rms(dev)		kUnwt	Expec	ted effunw
This run	i =	IsUnw	<w>	<w-1>			1/<w>	Max Wt	<w>/MaxWt
User settings	1	yes	1.000	0.000			1.000		
Var : VINCIA defaults	1	yes	1.000	0.000			1.000	1.000	1.000
Var : Alphas-Hi	2	no	0.996	-3.89e-03			1.004	22.414	$4.44 \mathrm{e}-02$
Var : Alphas-Lo	3	no	1.020	$1.99 \mathrm{e}-02$			0.981	43.099	$2.37 \mathrm{e}-02$
Var : Antennae-Hi		no	1.000	$2.61 \mathrm{e}-04$	-		1.000	5.417	0.185
Var : Antennae-Lo	5	no	0.996	-4.33e-03	-		1.004	10.753	9.26e-02
Var : NLO-Hi	6	yes	1.000	0.000			1.000	1.000	1.000
Var : NLO-Lo	7	yes	1.000	0.000	-		1.000	1.000	1.000
Var : Ordering-Stronger	8	no	1.004	$4.48 \mathrm{e}-03$	-		0.996	14.225	$7.06 \mathrm{e}-02$
Var : Ordering-mDaughter	9	no	1.033	$3.25 \mathrm{e}-02$	-		0.968	55.954	1.85e-02
Var : Subleading-Color-Hi	10	no	1.001	$7.37 \mathrm{e}-04$	-		0.999	1.505	0.665
Var : Subleading-Color-Lo	11	no	1.006	$6.44 \mathrm{e}-03$	-		0.994	5.283	0.191

Introduction to QCD

I. Fundamentals of QCD2. Jets and Fixed-Order QCD3. Monte Carlo Generators and Showers
4. Matching at LO and NLO
5. QCD in the Infrared

Note:Teach-yourself PYTHIA tutorial posted at: www.cern.ch/skands/slides

Supplementary Slides

Hard Processes

Wide spectrum from "general-purpose" to "one-issue", see e.g.
http://www.cedar.ac.uk/hepcode/
Free for all as long as Les-Houches-compliant output.
I) General-purpose, leading-order:

- MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):
http://madgraph.physics.uiuc.edu/
- CompHEP/CalcHEP (matrix-elements-based, $\sim \leq 4$ outgoing partons)
- Comix: part of SHERPA (Behrends-Giele recursion)
- HELAC-PHEGAS (Dyson-Schwinger)

Hard Processes

Wide spectrum from "general-purpose" to "one-issue", see e.g.
http://www.cedar.ac.uk/hepcode/
Free for all as long as Les-Houches-compliant output.
I) General-purpose, leading-order:

- MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):
http://madgraph.physics.uiuc.edu/
- CompHEP/CalcHEP (matrix-elements-based, $\sim \leq 4$ outgoing partons)
- Comix: part of SHERPA (Behrends-Giele recursion)
- HELAC-PHEGAS (Dyson-Schwinger)
II) Special processes, leading-order:
- ALPGEN: $\mathrm{W} / \mathrm{Z}+\leq 6 \mathrm{j}, n \mathrm{~W}+m \mathrm{Z}+k \mathrm{H}+\leq 3 \mathrm{j}, \ldots$
- AcerMC: t̄̄b̄, ...
- VECBOS: W/Z+ $\leq 4 j$

Hard Processes

Wide spectrum from "general-purpose" to "one-issue", see e.g.
http://www.cedar.ac.uk/hepcode/
Free for all as long as Les-Houches-compliant output.
I) General-purpose, leading-order:

- MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):
http://madgraph.physics.uiuc.edu/
- CompHEP/CalcHEP (matrix-elements-based, $\sim \leq 4$ outgoing partons)
- Comix: part of SHERPA (Behrends-Giele recursion)
- HELAC-PHEGAS (Dyson-Schwinger)
II) Special processes, leading-order:
- ALPGEN: $\mathrm{W} / \mathrm{Z}+\leq 6 \mathrm{j}, n \mathrm{~W}+m \mathrm{Z}+k \mathrm{H}+\leq 3 \mathrm{j}, \ldots$
- AcerMC: $\mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}, \ldots$
- VECBOS: W/Z+ $\leq 4 j$
III) Special processes, next-to-leading-order:
- MCFM: NLO W/Z+ $\leq 2 \mathrm{j}, \mathrm{WZ}, \mathrm{WH}, \mathrm{H}+\leq 1 \mathrm{j}$
- GRACE+Bases/Spring

Note: NLO codes not yet generally interfaced to shower MCs

Splitting Functions

Altarelli-Parisi

(E.g., PYTHIA)
$\mathrm{d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z$.
$P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z}$,
$P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}$,
$P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right)$,
$P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}$,
$P_{\ell \rightarrow \ell \gamma}(z)=e_{\ell}^{2} \frac{1+z^{2}}{1-z}$,

Splitting Functions

Altarelli-Parisi

(E.g., PYTHIA)
$\mathrm{d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z$.
$P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z}$,
$P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}$,
$P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right)$,
$P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}$,
$P_{\ell \rightarrow \ell \gamma}(z)=e_{\ell}^{2} \frac{1+z^{2}}{1-z}$,

Splitting Functions

Altarelli-Parisi

(E.g., PYTHIA)
$\mathrm{d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z$.
$P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z}$,
$P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}$,
$P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right)$,
$P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}$,
$P_{\ell \rightarrow \ell \gamma}(z)=e_{\ell}^{2} \frac{1+z^{2}}{1-z}$,

Splitting Functions

Altarelli-Parisi

(E.g., PYTHIA)
$\mathrm{d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z$.
$P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z}$,
$P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}$,
$P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right)$,
$P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}$,
$P_{\ell \rightarrow \ell \gamma}(z)=e_{\ell}^{2} \frac{1+z^{2}}{1-z}$,

Dipole-Antennae
(E.g., ARIADNE,VINCIA)

$$
\mathrm{d} \mathcal{P}_{I K \rightarrow i j k}=\frac{\mathrm{d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s} a\left(s_{i j}, s_{j k}\right)
$$

$$
a_{q \bar{q} \rightarrow q g \bar{q}}=\frac{2 C_{F}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}\right)
$$

$$
a_{q g \rightarrow q g g}=\frac{C_{A}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}-s_{i j}^{3}\right)
$$

$$
a_{g g \rightarrow g g g}=\frac{C_{A}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}-s_{i j}^{3}-s_{j k}^{3}\right)
$$

$$
a_{q g \rightarrow q \bar{q}^{\prime} q^{\prime}}=\frac{T_{R}}{s_{j k}}\left(s-2 s_{i j}+2 s_{i j}^{2}\right)
$$

$$
a_{g g \rightarrow g \bar{q}^{\prime} q^{\prime}}=a_{q g \rightarrow q \bar{q}^{\prime} q^{\prime}}
$$

$\ldots+$ non-singular terms

Splitting Functions

Altarelli-Parisi

(E.g., PYTHIA)
$\mathrm{d} \mathcal{P}_{a}=\sum_{b, c} \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}(z) \mathrm{d} t \mathrm{~d} z$.
$P_{\mathrm{q} \rightarrow \mathrm{qg}}(z)=C_{F} \frac{1+z^{2}}{1-z}$,
$P_{\mathrm{g} \rightarrow \mathrm{gg}}(z)=N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}$,
$P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z)=T_{R}\left(z^{2}+(1-z)^{2}\right)$,
$P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z)=e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}$,
$P_{\ell \rightarrow \ell}(z)=e_{\ell}^{2} \frac{1+z^{2}}{1-z}$,

Dipole-Antennae
(E.g., ARIADNE,VINCIA)

$$
\mathrm{d} \mathcal{P}_{I K \rightarrow i j k}=\frac{\mathrm{d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s} a\left(s_{i j}, s_{j k}\right)
$$

$$
a_{q \bar{q} \rightarrow q g \bar{q}}=\frac{2 C_{F}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}\right)
$$

$$
a_{q g \rightarrow q g g}=\frac{C_{A}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}-s_{i j}^{3}\right)
$$

$$
a_{g g \rightarrow g g g}=\frac{C_{A}}{s_{i j} s_{j k}}\left(2 s_{i k} s+s_{i j}^{2}+s_{j k}^{2}-s_{i j}^{3}-s_{j k}^{3}\right)
$$

$$
a_{q g \rightarrow q \bar{q}^{\prime} q^{\prime}}=\frac{T_{R}}{s_{j k}}\left(s-2 s_{i j}+2 s_{i j}^{2}\right)
$$

$$
a_{g g \rightarrow g \bar{q}^{\prime} q^{\prime}}=a_{q g \rightarrow q \bar{q}^{\prime} q^{\prime}}
$$

$\ldots+$ non-singular terms

Initial-Final Interference

Who emitted that gluon?

Real QFT = sum over amplitudes, then square \rightarrow interference (IF coherence) Respected by dipole/antenna languages (and by angular ordering), but not by conventional DGLAP

Separation meaningful for collinear radiation, but not for soft ...

Initial-State vs Final-State Evolution

Virtualities are Timelike: $\mathrm{p}^{2>}>0$

Start at $\mathrm{Q}^{2}=\mathrm{QF}^{2}$
"Forwards evolution"

Virtualities are
Spacelike: $\mathrm{p}^{2}<0$
Start at $\mathrm{Q}^{2}=\mathrm{QF}^{2}$
Constrained backwards evolution towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft ...

(Initial-State Evolution)

DGLAP for Parton Density

$$
\frac{\mathrm{d} f_{b}(x, t)}{\mathrm{d} t}=\sum_{a, c} \int \frac{\mathrm{~d} x^{\prime}}{x^{\prime}} f_{a}\left(x^{\prime}, t\right) \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}\left(\frac{x}{x^{\prime}}\right)
$$

\rightarrow Sudakov for ISR

$$
\begin{aligned}
\Delta\left(x, t_{\max }, t\right) & =\exp \left\{-\int_{t}^{t_{\max }} \mathrm{d} t^{\prime} \sum_{a, c} \int \frac{\mathrm{~d} x^{\prime}}{x^{\prime}} \frac{f_{a}\left(x^{\prime}, t^{\prime}\right)}{f_{b}\left(x, t^{\prime}\right)} \frac{\alpha_{a b c}\left(t^{\prime}\right)}{2 \pi} P_{a \rightarrow b c}\left(\frac{x}{x^{\prime}}\right)\right\} \\
& =\exp \left\{-\int_{t}^{t_{\max }} \mathrm{d} t^{\prime} \sum_{a, c} \int \mathrm{~d} z \frac{\alpha_{a b c}\left(t^{\prime}\right)}{2 \pi} P_{a \rightarrow b c}(z) \frac{x^{\prime} f_{a}\left(x^{\prime}, t^{\prime}\right)}{x f_{b}\left(x, t^{\prime}\right)}\right\}
\end{aligned}
$$

(Initial-State Evolution)

DGLAP for Parton Density

$$
\frac{\mathrm{d} f_{b}(x, t)}{\mathrm{d} t}=\sum_{a, c} \int \frac{\mathrm{~d} x^{\prime}}{x^{\prime}} f_{a}\left(x^{\prime}, t\right) \frac{\alpha_{a b c}}{2 \pi} P_{a \rightarrow b c}\left(\frac{x}{x^{\prime}}\right)
$$

\rightarrow Sudakov for ISR

$$
\begin{aligned}
\Delta\left(x, t_{\max }, t\right) & =\exp \left\{-\int_{t}^{t_{\max }} \mathrm{d} t^{\prime} \sum_{a, c} \int \frac{\mathrm{~d} x^{\prime}}{x^{\prime}} \frac{f_{a}\left(x^{\prime}, t^{\prime}\right)}{f_{b}\left(x, t^{\prime}\right)} \frac{\alpha_{a b c}\left(t^{\prime}\right)}{2 \pi} P_{a \rightarrow b c}\left(\frac{x}{x^{\prime}}\right)\right\} \\
& =\exp \left\{-\int_{t}^{t_{\max }} \mathrm{d} t^{\prime} \sum_{a, c} \int \mathrm{~d} z \frac{\alpha_{a b c}\left(t^{\prime}\right)}{2 \pi} P_{a \rightarrow b c}(z) \frac{x^{\prime} f_{a}\left(x^{\prime}, t^{\prime}\right)}{x f_{b}\left(x, t^{\prime}\right)}\right\}
\end{aligned}
$$

