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A Monte Carlo technique: is any technique making use 
of random numbers to solve a problem

Convergence:

Calculus: {A} converges to B
if an n exists for which 

|Ai>n - B| < ε, for any ε >0

Monte Carlo: {A} converges to B 
if n exists for which 
the probability for

 |Ai>n - B| < ε,  for any ε > 0,
is > P, for any P[0<P<1]
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“This risk, that convergence is only given with a 
certain probability, is inherent in Monte Carlo 
calculations and is the reason why this technique 
was named after the world’s most famous 
gambling casino. Indeed, the name is doubly 
appropriate because the style of gambling in the 
Monte Carlo casino, not to be confused with the 
noisy and tasteless gambling houses of Las 
Vegas and Reno, is serious and sophisticated.”

F. James, “Monte Carlo theory and practice”, 
Rept. Prog. Phys. 43 (1980) 1145

A Monte Carlo technique: is any technique making use 
of random numbers to solve a problem

Convergence:

Calculus: {A} converges to B
if an n exists for which 

|Ai>n - B| < ε, for any ε >0

Monte Carlo: {A} converges to B 
if n exists for which 
the probability for

 |Ai>n - B| < ε,  for any ε > 0,
is > P, for any P[0<P<1]
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→ Integrate differential cross sections over 
specific phase-space regions

LHC detector
Cosmic-Ray detector
Neutrino detector

X-ray telescope
…

source
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In particle physics: 
Integrate over all quantum histories 
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Convergence
MC convergence is Stochastic! 

       in any dimension
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Uncertainty 
(after n function evaluations)

neval / bin
Approx

Conv. Rate 
(in 1D)

Approx
Conv. Rate 
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4 1/n4/D

… m-point (Gauss rule) mD 1/n2m-1 1/n(2m-1)/D 

Monte Carlo 1 1/n1/2 1/n1/2 

⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1p
n
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+ many ways to optimize: stratification, adaptation, ... 
+ gives “events” → iterative solutions, 

+ interfaces to detector simulation & propagation codes
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Improve lowest-order perturbation theory, 
by including the ‘most significant’ corrections

→ complete events (can evaluate any observable you want)

Calculate Everything ≈ solve QCD → requires compromise!

Existing Approaches

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String.
HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering.
SHERPA : Begun in 2000. Originated in “matching” of matrix elements to showers: CKKW.
+ MORE SPECIALIZED: ALPGEN, MADGRAPH, ARIADNE, VINCIA, WHIZARD, MC@NLO, POWHEG, … 

Reality is more complicated
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PYTHIA anno 1978
(then called JETSET)

LU TP 78-18
November, 1978

A Monte Carlo Program for Quark Jet 
Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is 
presented, that simulates the 
fragmentation of a fast parton into a 
jet of mesons. It uses an iterative 
scaling scheme and is compatible with 
the jet model of Field and Feynman.

Note: Field-Feynman was an early fragmentation model
Now superseded by the String (in PYTHIA) and 

Cluster (in HERWIG & SHERPA) models.
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LU TP 07-28 (CPC 178 (2008) 852)
October, 2007

A Brief Introduction to PYTHIA 8.1

T. Sjöstrand, S. Mrenna, P. Skands

The Pythia program is a standard tool 
for the generation of high-energy 
collisions, comprising a coherent set 
of physics models for the evolution 
from a few-body hard process to a 
complex multihadronic final state. It 
contains a library of hard processes 
and models for initial- and final-state 
parton showers, multiple parton-parton 
interactions, beam remnants, string 
fragmentation and particle decays. It 
also has a set of utilities and 
interfaces to external programs. […]

(PYTHIA)

6

PYTHIA anno 2012
(now called PYTHIA 8)

~ 80,000 lines of C++

• Hard Processes (internal, semi-
internal, or via Les Houches events)

• BSM (internal or via interfaces)

• PDFs (internal or via interfaces)

• Showers (internal or inherited)

• Multiple parton interactions

• Beam Remnants

• String Fragmentation

• Decays (internal or via interfaces)

• Examples and Tutorial

• Online HTML / PHP Manual

• Utilities and interfaces to 
external programs 

What a modern MC generator has inside:
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( Tr a d i t i o n a l )  M o n t e  C a r l o  G e n e r a t o r s
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Strings

Based on small-angle singularity of accelerated 
charges (synchrotron radiation, semi-classical)

Altarelli-Parisi Splitting Kernels
Leading Logarithms, Leading Color, …

+ Colour coherence

Leading Order,
Infinite Lifetimes,

…  

Hard
Process
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From Fixed to Infinite Order

Trivially untrue for QCD

We’re colliding, and observing, hadrons → small scales

We want to consider high-scale processes → large scale differences

Fixed Order : All resolved scales >> ΛQCD AND no large hierarchies

→ A Priori, no perturbatively calculable 
observables in hadron-hadron collisions

8
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We’re colliding, and observing, hadrons → small scales

We want to consider high-scale processes → large scale differences

Fixed Order : All resolved scales >> ΛQCD AND no large hierarchies

→ A Priori, no perturbatively calculable 
observables in hadron-hadron collisions
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20

PDFs: needed to compute 
inclusive cross sections

FFs: needed to compute 
(semi-)exclusive cross sections

8
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Trivially untrue for QCD
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We want to consider high-scale processes → large scale differences

Fixed Order : All resolved scales >> ΛQCD AND no large hierarchies

→ A Priori, no perturbatively calculable 
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i , Q

2
f)

dX̂f

D(X̂f � X, Q2
i , Q

2
f)

20

PDFs: needed to compute 
inclusive cross sections

FFs: needed to compute 
(semi-)exclusive cross sections

Resummed: All resolved scales >> ΛQCD AND X Infrared Safe

8
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Jets and Showers

Jet clustering algorithms

Map event from low resolution scale (i.e., with many partons/
hadrons, most of which are soft) to a higher resolution scale (with 
fewer, hard, jets)

9

Jet Clustering
(Deterministic)

(Winner-takes-all)

Parton Showering
(Probabilistic)

Q ~ Λ ~ mπ 
~ 150 MeV 

Q ~ Qhad 
~ 1 GeV

Q~ Ecm 
~ MX

Parton shower algorithms

Map a few hard partons to many softer ones

Probabilistic → closer to nature, but normally not uniquely 
invertible by any jet algorithm

Many soft particles A few hard jets

Born-level MEHadronization

(see Lopez-Villarejo & PS [JHEP 1111 (2011) 150] for a shower that is invertible)



Perturbative Evolution: Bremsstrahlung

10



Perturbative Evolution: Bremsstrahlung

Charges 
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Perturbative Evolution: Bremsstrahlung

Charges 
Stopped

Associated field 
(fluctuations) continues

ISRISR

10

The harder they stop, the harder the 
fluctuations that continue to become strahlung
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dσ
X$

✓For any basic process (calculated process by process)d�X =

Bremsstrahlung

Recall: Factorization in Soft and Collinear Limits

|M(. . . , pi, pj , pk . . .)|2
jg!0! g2sC

2sik
sijsjk

|M(. . . , pi, pk, . . .)|2

|M(. . . , pi, pj . . .)|2
i||j! g2sC

P (z)

sij
|M(. . . , pi + pj , . . .)|2

P(z) :  “Altarelli-Parisi Splitting Functions” (more later)

“Soft Eikonal” : generalizes to Dipole/Antenna Functions 
(more later)
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Recall: Singularities mandated by gauge theory
Non-singular terms: up to you 
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Iterated factorization
Gives us an approximation to ∞-order tree-level cross sections. 

Exact in singular (strongly ordered) limit.
Finite terms → Uncertainty on non-singular (hard) radiation
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Loops and Legs

Coefficients of the Perturbative Series

14

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Universality (scaling)

Jet-within-a-jet-within-a-jet-...
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Loops and Legs

Coefficients of the Perturbative Series

14

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

The corrections from 
Quantum Loops are 

missing

Universality (scaling)

Jet-within-a-jet-within-a-jet-...
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The Resummation Idea

15

►  Interpretation:  the structure evolves! (example: X = 2-jets) 
•  Take a jet algorithm, with resolution measure “Q”, apply it to your events 
•  At a very crude resolution, you find that everything is 2-jets  

•  At finer resolutions  some 2-jets migrate  3-jets = σX+1(Q) = σX;incl– σX;excl(Q) 
•  Later, some 3-jets migrate further, etc  σX+n(Q) = σX;incl– ∑σX+m<n;excl(Q) 
•  This evolution takes place between two scales, Qin ~ s and Qend ~ Qhad 

►  σX;tot  = Sum (σX+0,1,2,3,…;excl ) = int(dσX) 

dσ
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X+2 &
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2
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ds3j
s3j

d�X+2 . . .
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•  Take a jet algorithm, with resolution measure “Q”, apply it to your events 
•  At a very crude resolution, you find that everything is 2-jets  

•  At finer resolutions  some 2-jets migrate  3-jets = σX+1(Q) = σX;incl– σX;excl(Q) 
•  Later, some 3-jets migrate further, etc  σX+n(Q) = σX;incl– ∑σX+m<n;excl(Q) 
•  This evolution takes place between two scales, Qin ~ s and Qend ~ Qhad 

►  σX;tot  = Sum (σX+0,1,2,3,…;excl ) = int(dσX) 
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What we need is a differential equation

Boundary condition: a few partons defined at a high scale (QF)

Then evolves (or “runs”) that parton system down to a low scale (the 
hadronization cutoff ~ 1 GeV) → It’s an evolution equation in QF

19
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Evolution Equations
What we need is a differential equation

Boundary condition: a few partons defined at a high scale (QF)

Then evolves (or “runs”) that parton system down to a low scale (the 
hadronization cutoff ~ 1 GeV) → It’s an evolution equation in QF

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.
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In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,

�(Q2
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2
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= exp
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g2
s
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!
, (10)

where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= c

N

. (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp

✓
�
Z

t

2

t

1

c
N

dt

◆
= exp (�c

N

�t) . (12)

This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= c

N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�

= g2
s

C A(�) �(Q2
1, Q

2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)
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Decay probability per unit time

(requires that the nucleus did not already decay)

= 1� cN�t+O(c2N )

∆(t1,t2) :  “Sudakov Factor”
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The Sudakov Factor

In nuclear decay, the Sudakov factor counts: 

How many nuclei remain undecayed after a time t
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In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
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In shower algorithms, branchings are generated with this distribution, starting from a uniformly
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Probability to remain undecayed in the time interval [t1,t2]
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The Sudakov Factor

In nuclear decay, the Sudakov factor counts: 

How many nuclei remain undecayed after a time t

In parton showers, we may also define a 
Sudakov factor for the parton system. It counts

The probability that the parton system doesn’t evolve (emit) when 
I run the factorization scale (~1/time) from a high to a lower scale 

21

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,
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where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.
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6

Evolution probability per unit time
(replace cN by proper shower evolution kernels)
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What’s the evolution kernel?

Altarelli-Parisi splitting functions

Can be derived (in the collinear limit) from requiring invariance 
of the physical result with respect to QF → RGE

22

Altarelli-Parisi
(E.g., PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
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non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
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t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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a

c

b

pb = z pa

pc = (1-z) pa

dt =
dQ2

Q2
= d lnQ2

… with Q2 some measure of event/jet resolution
measuring parton virtualities / formation time / …

Different models make different choices
But choice is not entirely free … 
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Figure 4: Illustration of the branching phase space, eq. (12), for qq̄ → qgq̄, with the original dipole-
antenna oriented horizontally, an antenna-like kinematics map (the “ARIADNE angle”) in which the
two parents share the transverse component of recoil, and φ chosen such that the gluon is radiated
upwards.

form factor is in turn given by the exponential of a branching integral,

∆ = exp(−A) , (28)

where, following the conventions laid down in the previous section, the integral A of an antenna
function over the 2→ 3 antenna phase space is

A =
∫

dsij dsjk
αs

4π

Cijk ā(s, sij , sjk,m2
i ,m

2
j ,m

2
k)√

λ
(
s,m2

I ,m
2
K

)
m→0
=

∫
dsij dsjk a(s, sij , sjk) . (29)

(We have suppressed the trivial integration over φ.) Here, we have set all masses to zero, which
approximation we adopt throughout this paper. Performing such integrals over all of phase space
yields exactly the subtraction terms used in antenna-based fixed-order calculations, see, e.g., ref. [36].
(If the approach relies on phase-space vetos, such as in the case of sector antennæ, we can treat these
as step functions that are part of the antenna function a, so that eq. (29) remains valid). Within the
shower algorithm, we need to evaluate the integral for a range of scales, and then invert the function
to write the lower scale as a function of the Sudakov form factor. The two-dimensional nature of the
integral means that we have to define coordinates, of which one will be the evolution scale of the
shower. We can use this to our advantage, as we will see below, to allow for a number of different
evolution variables within the same formalism. A functional inversion that is both flexible and efficient
is accomplished by first using a simple overestimate of the antenna function, and then vetoing to obtain
the exact result.
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Name a b p Resulting form for Q2
E ζmin(Q2

E) ζmax(Q2
E)

1 p⊥-ordering 1 1 1
4sijsjk

s = 4p2⊥Ariadne
1∓
√

1−Q2
E
/s

2

2 mD-ordering 1
2 1 1 2min(sij, sjk) = 2m2

D
Q2

E
2s 1− Q2

E
2s

3 E∗-ordering 1 0 1
(sij+sjk)2

s = 4E∗2
j 0 1

4 V -ordering 1
4 1 1

√
s(sij + sjk)−

√
s|sij − sjk|

1∓(1−Q2
E/s)2

2

5 E∗
Tn-ordering (n ≥ 1) 2n 1 1

2n n = 1 :
√

8sijsjk(s2ij+s2
jk
)

s
1∓(1−(Q2

E/s)2n)
1
4n

2

Table 1: Examples of evolution variables in the form of eq. (47) and corresponding to the illustrations
in figs. 6 and 7. The nominal ζ boundaries for E∗ ordering would lead to infinities, so for practical
applications the bounds implied by the hadronization cutoff should be used instead.

JETSET & FORTRAN PYTHIA PYTHIA 6.3+ & PYTHIA 8 HERWIG++
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Figure 8: In an old-fashioned parton shower or partioned-dipole shower, the process âb̂ → arb is
divided onto two terms, one representing emission off parton â and the other emission off parton b̂.
Left Pane: contours of constant sar, i.e., the virtuality that corresponds to a∗ → ar in a virtuality-
ordered parton shower. The inset shows the equivalent contours for emission off side b. Middle
Pane: contours of constant pT evol, the variable used in the p⊥-ordered PYTHIA shower. Note that
for the virtuality-ordered shower, additional vetos on the emission angle, not shown here, must be
imposed to enforce coherence, while in the p⊥-ordered case, this is less crucial due to the use of dipole
kinematics. In an angular-ordered parton shower (right pane), each parton is still evolved separately,
but the potential for double counting has been removed by effectively restricting the emission from
each parton to non-overlapping regions, here angular-ordered cones, and hence we can represent the
two terms on one and the same plot. (Note: while the original HERWIG implementation of angular
ordering did imply some overlap in the soft region, this has been removed in HERWIG++.) The price
to pay is that this introduces an artificially unpopulated dead zone in the phase space, illustrated by
the striped area. The contour labels denote values of yE = Q2

E/s.
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Figure 4: Illustration of the branching phase space, eq. (12), for qq̄ → qgq̄, with the original dipole-
antenna oriented horizontally, an antenna-like kinematics map (the “ARIADNE angle”) in which the
two parents share the transverse component of recoil, and φ chosen such that the gluon is radiated
upwards.

form factor is in turn given by the exponential of a branching integral,

∆ = exp(−A) , (28)

where, following the conventions laid down in the previous section, the integral A of an antenna
function over the 2→ 3 antenna phase space is

A =
∫

dsij dsjk
αs

4π

Cijk ā(s, sij , sjk,m2
i ,m

2
j ,m

2
k)√

λ
(
s,m2

I ,m
2
K

)
m→0
=

∫
dsij dsjk a(s, sij , sjk) . (29)

(We have suppressed the trivial integration over φ.) Here, we have set all masses to zero, which
approximation we adopt throughout this paper. Performing such integrals over all of phase space
yields exactly the subtraction terms used in antenna-based fixed-order calculations, see, e.g., ref. [36].
(If the approach relies on phase-space vetos, such as in the case of sector antennæ, we can treat these
as step functions that are part of the antenna function a, so that eq. (29) remains valid). Within the
shower algorithm, we need to evaluate the integral for a range of scales, and then invert the function
to write the lower scale as a function of the Sudakov form factor. The two-dimensional nature of the
integral means that we have to define coordinates, of which one will be the evolution scale of the
shower. We can use this to our advantage, as we will see below, to allow for a number of different
evolution variables within the same formalism. A functional inversion that is both flexible and efficient
is accomplished by first using a simple overestimate of the antenna function, and then vetoing to obtain
the exact result.
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Table 1: Examples of evolution variables in the form of eq. (47) and corresponding to the illustrations
in figs. 6 and 7. The nominal ζ boundaries for E∗ ordering would lead to infinities, so for practical
applications the bounds implied by the hadronization cutoff should be used instead.
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Figure 8: In an old-fashioned parton shower or partioned-dipole shower, the process âb̂ → arb is
divided onto two terms, one representing emission off parton â and the other emission off parton b̂.
Left Pane: contours of constant sar, i.e., the virtuality that corresponds to a∗ → ar in a virtuality-
ordered parton shower. The inset shows the equivalent contours for emission off side b. Middle
Pane: contours of constant pT evol, the variable used in the p⊥-ordered PYTHIA shower. Note that
for the virtuality-ordered shower, additional vetos on the emission angle, not shown here, must be
imposed to enforce coherence, while in the p⊥-ordered case, this is less crucial due to the use of dipole
kinematics. In an angular-ordered parton shower (right pane), each parton is still evolved separately,
but the potential for double counting has been removed by effectively restricting the emission from
each parton to non-overlapping regions, here angular-ordered cones, and hence we can represent the
two terms on one and the same plot. (Note: while the original HERWIG implementation of angular
ordering did imply some overlap in the soft region, this has been removed in HERWIG++.) The price
to pay is that this introduces an artificially unpopulated dead zone in the phase space, illustrated by
the striped area. The contour labels denote values of yE = Q2

E/s.
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Figure 4: Illustration of the branching phase space, eq. (12), for qq̄ → qgq̄, with the original dipole-
antenna oriented horizontally, an antenna-like kinematics map (the “ARIADNE angle”) in which the
two parents share the transverse component of recoil, and φ chosen such that the gluon is radiated
upwards.

form factor is in turn given by the exponential of a branching integral,

∆ = exp(−A) , (28)

where, following the conventions laid down in the previous section, the integral A of an antenna
function over the 2→ 3 antenna phase space is

A =
∫

dsij dsjk
αs

4π

Cijk ā(s, sij , sjk,m2
i ,m

2
j ,m

2
k)√

λ
(
s,m2

I ,m
2
K

)
m→0
=

∫
dsij dsjk a(s, sij , sjk) . (29)

(We have suppressed the trivial integration over φ.) Here, we have set all masses to zero, which
approximation we adopt throughout this paper. Performing such integrals over all of phase space
yields exactly the subtraction terms used in antenna-based fixed-order calculations, see, e.g., ref. [36].
(If the approach relies on phase-space vetos, such as in the case of sector antennæ, we can treat these
as step functions that are part of the antenna function a, so that eq. (29) remains valid). Within the
shower algorithm, we need to evaluate the integral for a range of scales, and then invert the function
to write the lower scale as a function of the Sudakov form factor. The two-dimensional nature of the
integral means that we have to define coordinates, of which one will be the evolution scale of the
shower. We can use this to our advantage, as we will see below, to allow for a number of different
evolution variables within the same formalism. A functional inversion that is both flexible and efficient
is accomplished by first using a simple overestimate of the antenna function, and then vetoing to obtain
the exact result.
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Figure 2: (Q2
3, ⇣) constant value for evolution variables linear (top) and quadratic (bottom) in the branch-

ing invariants, for mass-ordering (left), p?-ordering (middle), and energy-ordering (right). Note that the
energy-ordering variables intersect the phase-space boundaries, where the antenna functions are singu-
lar, for finite values of the evolution variable. They can therefore only be used as evolution variables
together with a separate infrared regulator, such as a cut in invariant mass, not shown here.

integrals,

⇣1 =

y
ij

y
ij

+ y
jk

(23)

⇣2 = y
ij

. (24)

The corresponding Jacobian factors, for each of the evolution-variable choices we shall consider, are
tabulated in tab. 1.

Note that, for the special case of the m2
D

and m4
D

variables, which contain the non-analytic function
min(y

ij

, y
jk

), the ⇣ definitions in eqs. (23) and (24) apply to the branch with y
ij

> y
jk

. For the other
branch, y

ij

and y
jk

should be interchanged. With this substitution, the Jacobians listed in tab. 1 apply to
both branches3.

3This corresponds to replacing y
ij

by max(y
ij

, y
jk

) in the numerator of eq. (23) and in eq. (24).
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Dipole-Antennae
(E.g., ARIADNE, VINCIA)
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Born {p} :  partons

But instead of evaluating O directly on the Born final state, 
first insert a showering operator

Most showers, with the exception of ARIADNE and the Winter–Krauss shower [32], are based on
collinear factorization, which is to say 1 → 2 branching in shower evolution. (PYTHIA 8 combines
a 1 → 2 splitting probability with a 2 → 3 phase-space mapping.) In the present paper, we continue
the development of a leading-log (LL) parton shower [33] based on dipole antennæ, that is 2 → 3
branching. We choose a simpler context than hadron collisions, that of electron–positron collisions.
This allows us to set aside the questions of initial-state emission as well as those of the underlying
event.

In sec. 2, we describe in greater detail the ingredients needed for such a shower, as well as our
normalization conventions, and compare the origins of different singularities and corresponding log-
arithms in different shower formalisms. We also discuss the different matching approaches in more
detail. In sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose
specializations correspond to a wide variety of interesting evolution variables. We then solve the re-
sulting evolution equation. In sec. 4, we discuss the shower algorithm, as well as improvements that
can be made to its logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
infrared-safe observable O,

dσH
dO

∣∣∣∣Born
=
∫

dΦH |M (0)
H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=
∫

dΦH |M (0)
H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appear-

3

H = Hard process
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Unitarity: to first order, S does nothing
S({p}H ,O) = � (O �O({p}H)) + O(↵s)
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Solve equation                     for t (with starting scale t1)

Analytically for simple splitting kernels, else numerically (or by trial+veto)

→ t scale for next branching
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Figure 1: Contours of constant value of the antenna function, ā0ijk for qq̄ → qgq̄ derived from Z decay
as function of the two phase-space invariants, with an arbitrary normalization and a logarithmic color
scale. Larger values are shown in lighter shades. The (single) collinear divergences sit on the axes,
while the (double) soft divergence sits at the origin.

factor, and ā0ijk is a generic color- and coupling-stripped dipole-antenna function, with superscript 0 to
denote a tree-level quantity. The three-particle matrix element is averaged azimuthally (over φ). Note
that our use of lower-case letters for the antenna function is intended to signify that it corresponds to
what is called a sub-antenna in ref. [36] for which lower-case letters are likewise used2.

For illustration, contours of constant value of ā0qgq̄(s, sqg, sgq̄) as derived from Z decay are shown
in fig. 1, over the 2 → 3 phase space, with an arbitrary normalization and a logarithmic color scale.
This function is called A0

3 in ref. [36] and is identical to the radiation function used for qq̄ → qgq̄
splittings in ARIADNE. One clearly sees the large enhancements towards the edges of phase space,
with a double pole (the overlap of two singularities, usually called soft and collinear) sitting at the
origin, and single singularities (soft or collinear) localized on the axes.

Writing the coupling factor as g2 = 4παs and combining it with the phase space factor, eq. (12),
we have the following antenna function normalization

a0IK→ijk(s, sij, sjk) ≡
1

√
λ
(
s,m2

I ,m
2
K

)
αs

4π
Cijk ā0ijk(s, sij , sjk) . (15)

That is, we use the notation ā for the coupling- and color-stripped antenna function, and the notation
a for the “dressed” antenna function, i.e., including its coupling, color, and phase-space prefactors.

Note that g2×(phase-space normalization) leads to a factor αs/(4π) independently of the type of
branching. As we believe that the formalism becomes more transparent if the origin of each factor
is kept clear throughout, we shall therefore use this factor for all branchings, instead of the more
traditional convention of using αs/(2π) for some branchings and αs/(4π) for others. Obviously, this
convention choice will be compensated by our conventions for the color factors and antenna-function
normalizations, such that the final result remains independent of this choice.

2Thus, in the notation of ref. [36], our dipole-antenna functions would be ā0
3 = A0

3, d̄03 = d03, ē03 =
1
2E

0
3 , f̄0

3 = f0
3 , and

ḡ03 =
1
2G

0
3.

7
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as function of the two phase-space invariants, with an arbitrary normalization and a logarithmic color
scale. Larger values are shown in lighter shades. The (single) collinear divergences sit on the axes,
while the (double) soft divergence sits at the origin.
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To find second (linearly independent) phase-space invariant

Solve equation                               for z (at scale t)

With the “primitive function” Iz(z, t) =

Z z
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Iz(z, t)

Iz(zmax

(t), t)

A Shower Algorithm

1. Generate Random Number, R ∈ [0,1]

Solve equation                     for t (with starting scale t1)

Analytically for simple splitting kernels, else numerically (or by trial+veto)

→ t scale for next branching

30

R = �(t1, t)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

yij ! sij!sijk ! 1"xk

y jk
!
s jk
!s
ijk
!
1"
x i

Figure 1: Contours of constant value of the antenna function, ā0ijk for qq̄ → qgq̄ derived from Z decay
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3 = A0

3, d̄03 = d03, ē03 =
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ḡ03 =
1
2G

0
3.

7

t

t1

(t,z)

3. Generate a third Random Number, Rφ ∈ [0,1]

Solve equation                for φ → Can now do 3D branching R' = '/2⇡



QCD

P. Skands

Lecture
III

Ambiguities

31

6

where λ(a, b, c) = a2+b2+c2−2ab−2bc−2ca is the Källén function, s[i] is the invariant mass squared
of the branching dipole, and mâ,b̂ are the rest masses of the original endpoint partons. The second line
represents the massless case, with the two orientation angles θ and ψ fixed as discussed above.

Immediately following the phase space in eq. (2) is a δ function requiring that the integration variable
tn+1 should be equal to the ordering variable t evaluated on the set of n+1 partons, {p}n+1, i.e. that the
configuration after branching indeed corresponds to a resolution scale of tn+1. We leave the possibility
open that different mappings will be associated with different functional forms for the post-branching
resolution scale, and retain a superscript on t[i] to denote this.

Finally, there are the evolution or showering kernels Ai({p}n→{p}n+1), representing the differen-
tial probability of branching, which we take to have the following form,

Ai({p}n→{p}n+1) = 4παs(µR({p}n+1)) Ci ai({p}n→{p}n+1) , (11)

where 4παs = g2
s is the strong coupling evaluated at a renormalization scale defined by the function

µR, Ci is the color factor (e.g. Ci = Nc = 3 for gg → ggg), and ai is a radiation function, giving a
leading-logarithmic approximation to the corresponding squared evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over possible overlapping phase-space regions, the
combined result should contain exactly the correct leading soft and collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are in constrast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty envelope. The renormalization scale µR could in
principle be a constant (fixed coupling) or running. Again, the point here is not to impose a specific
choice but just to ensure that the language is sufficiently general to explore the ambiguity.

Together, eqs. (2), (4), and (11) can be used as a framework for defining more concrete parton
showers. An explicit evolution algorithm (whether based on partons, dipoles, or other objects) must
specify:

1. The choice of perturbative evolution variable(s) t[i].

2. The choice of phase-space mapping dΦ[i]
n+1/dΦn.

3. The choice of radiation functions ai, as a function of the phase-space variables.

4. The choice of renormalization scale function µR.

5. Choices of starting and ending scales.

The definitions above are already sufficient to describe how such an algorithm can be matched to
fixed order perturbation theory. We shall later present several explicit implementations of these ideas, in
the form of the VINCIA code, see section 5.

Let us begin by seeing what contributions the pure parton shower gives at each order in perturbation
theory. Since∆ is the probability of no branching between two scales, 1−∆ is the integrated branching
probability Pbranch. Its rate of change gives the instantaneous branching probability over a differential

The final states generated by the shower 
algorithm will depend on
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The final states generated by the shower 
algorithm will depend on

→ gives us additional handles for uncertainty estimates, beyond just μR
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(Physics Consequences)

Subleading Issues

Hard Jet Substructure (showers approximate 1→3 by iterated 1→2, 
but full 1→3 kernels have additional structure. Iterated 1→2 only works when 
successive emissions are strongly ordered (dominant) but not when two or 
more emissions happen at ~ the same scale → hard substructure)

pT kicks from recoil strategy (global vs local; 1→ 2 vs 2→3)

Gluon Splittings g→qq (less well controlled than gluon emission)

Mass Effects (example: b-jet calibration vs light-jet)

Subleading coherence (e.g., angular-ordered parton showers vs pT-
ordered dipole ones, in particular initial-final connections…)
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Current “holy grail”:

Include full higher-order splitting kernels 
→ will reduce all these ambiguities

Active field of research.

For now, must do our best to estimate 
the uncertainties.  
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Tuning

1. Fragmentation Tuning
Perturbative: jet radiation, jet broadening, jet structure

Non-perturbative: hadronization modeling & parameters

2. Initial-State Tuning
Perturbative: initial-state radiation, initial-final interference

Non-perturbative: PDFs, primordial kT

3. Underlying-Event & Min-Bias Tuning
Perturbative: Multi-parton interactions, rescattering 

Non-perturbative: Multi-parton PDFs, Beam Remnant fragmentation, 
Color (re)connections, collective effects, impact parameter dependence, … 
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Example: pQCD Shower Tuning

The value of the strong coupling at the Z pole 

Governs overall amount of radiation

Renormalization Scheme and Scale for αs 

1- / 2-loop running, MSbar / CMW scheme, μR ~ Q2 or pT2

Additional Matrix Elements included?

At tree level / one-loop level?  Using what scheme? 

Ordering variable, coherence treatment, effective 1→3 
(or 2→4), recoil strategy, etc

34
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αs Running
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Significant Discrepancies (>10%)
for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.

– 3 –
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PYTHIA 8 (hadronization on) vs LEP: Thrust

1

These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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PYTHIA 8 (hadronization on) vs LEP: Thrust

Note:  Value of Strong coupling is
αs(MZ) = 0.14

1

These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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PYTHIA 8 (hadronization on) vs LEP: Thrust

Note:  Value of Strong coupling is
αs(MZ) = 0.12
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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data, and if one is not careful they are accepted as if they were data. All Monte Carlo 
codes come with a GIGO (garbage in, garbage out) warning label. But the GIGO 
warning label is just as easy for a physicist to ignore as that little message on a packet 
of cigarettes is for a chain smoker to ignore. I see nowadays experimental papers that 
claim agreement with QCD (translation: someone’s simulation labeled QCD) and/or 
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Account for parameters + pertinent cross-checks and validations
Do serious effort to estimate uncertainties, by salient variations
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PYTHIA 6 example
Perugia Variations

μR, KMPI, CR, Ecm-scaling, PDFs

VINCIA + PYTHIA 8 example
Vincia:uncertaintyBands = on

b) One shower run 
+ unitarity-based uncertainties → envelope

Plot from mcplots.cern.ch

Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003PS, Phys. Rev. D82 (2010) 074018

http://mcplots.cern.ch
http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1005.3457
http://arxiv.org/abs/arXiv:1005.3457
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Plot from mcplots.cern.ch

Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003PS, Phys. Rev. D82 (2010) 074018

b) One shower run 
+ unitarity-based uncertainties → envelope

Matching reduces uncertainty

VINCIA + PYTHIA 8 example
Vincia:uncertaintyBands = onPYTHIA 6 example

Perugia Variations
μR, KMPI, CR, Ecm-scaling, PDFs

http://mcplots.cern.ch
http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1005.3457
http://arxiv.org/abs/arXiv:1005.3457
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Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003

 *-------  PYTHIA Event and Cross Section Statistics  -------------------------------------------------------------*
 |                                                                                                                 |
 | Subprocess                                    Code |            Number of events       |      sigma +- delta    |
 |                                                    |       Tried   Selected   Accepted |     (estimated) (mb)   |
 |                                                    |                                   |                        |
 |-----------------------------------------------------------------------------------------------------------------|
 |                                                    |                                   |                        |
 | f fbar -> gamma*/Z0                            221 |       10511      10000      10000 |   4.143e-05  0.000e+00 |
 |                                                    |                                   |                        |
 | sum                                                |       10511      10000      10000 |   4.143e-05  0.000e+00 |
 |                                                                                                                 |
 *-------  End PYTHIA Event and Cross Section Statistics ----------------------------------------------------------*

 *-------  VINCIA Statistics  -------------------------------------------------------------------------------------*
 |                                                                                                                 |
 |                                                                                                                 |
 | Number of nonunity-weight events                            =      none                                         |
 | Number of negative-weight events                            =      none                                         |
 |                                                                                                                 |
 |                                     weight(i)          Avg Wt   Avg Dev  rms(dev)     kUnwt     Expected effUnw |
 | This run                               i =     IsUnw     <w>     <w-1>                1/<w>   Max Wt  <w>/MaxWt |
 |    User settings                           0    yes     1.000     0.000         -     1.000        -         -  |
 |    Var : VINCIA defaults                   1    yes     1.000     0.000         -     1.000    1.000     1.000  |
 |    Var : AlphaS-Hi                         2     no     0.996 -3.89e-03         -     1.004   22.414  4.44e-02  |
 |    Var : AlphaS-Lo                         3     no     1.020  1.99e-02         -     0.981   43.099  2.37e-02  |
 |    Var : Antennae-Hi                       4     no     1.000  2.61e-04         -     1.000    5.417     0.185  |
 |    Var : Antennae-Lo                       5     no     0.996 -4.33e-03         -     1.004   10.753  9.26e-02  |
 |    Var : NLO-Hi                            6    yes     1.000     0.000         -     1.000    1.000     1.000  |
 |    Var : NLO-Lo                            7    yes     1.000     0.000         -     1.000    1.000     1.000  |
 |    Var : Ordering-Stronger                 8     no     1.004  4.48e-03         -     0.996   14.225  7.06e-02  |
 |    Var : Ordering-mDaughter                9     no     1.033  3.25e-02         -     0.968   55.954  1.85e-02  |
 |    Var : Subleading-Color-Hi              10     no     1.001  7.37e-04         -     0.999    1.505     0.665  |
 |    Var : Subleading-Color-Lo              11     no     1.006  6.44e-03         -     0.994    5.283     0.191  |
 |                                                                                                                 |
 *-------  End VINCIA Statistics ----------------------------------------------------------------------------------*

One shower run (VINCIA + PYTHIA)
+ unitarity-based uncertainties → envelope

http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1102.2126
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Introduction to QCD

1. Fundamentals of QCD

2. Jets and Fixed-Order QCD

3. Monte Carlo Generators and Showers

4. Matching at LO and NLO

5. QCD in the Infrared
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Note: Teach-yourself PYTHIA tutorial posted at:
www.cern.ch/skands/slides

http://www.cern.ch/skands
http://www.cern.ch/skands
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Matrix-Elements Programs

Wide spectrum from “general-purpose” to “one-issue”, see e.g.
http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:
• MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

• CompHEP/CalcHEP (matrix-elements-based, ∼≤ 4 outgoing partons)
• Comix: part of SHERPA (Behrends-Giele recursion)
• HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:
• ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, . . .
• AcerMC: ttbb, . . .
• VECBOS: W/Z+ ≤ 4j

III) Special processes, next-to-leading-order:
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• GRACE+Bases/Spring

Slide from T. Sjöstrand
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Matrix-Elements Programs

Wide spectrum from “general-purpose” to “one-issue”, see e.g.
http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:
• MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

• CompHEP/CalcHEP (matrix-elements-based, ∼≤ 4 outgoing partons)
• Comix: part of SHERPA (Behrends-Giele recursion)
• HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:
• ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, . . .
• AcerMC: ttbb, . . .
• VECBOS: W/Z+ ≤ 4j

III) Special processes, next-to-leading-order:
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• GRACE+Bases/Spring

Matrix-Elements Programs

Wide spectrum from “general-purpose” to “one-issue”, see e.g.
http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:
• MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

• CompHEP/CalcHEP (matrix-elements-based, ∼≤ 4 outgoing partons)
• Comix: part of SHERPA (Behrends-Giele recursion)
• HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:
• ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, . . .
• AcerMC: ttbb, . . .
• VECBOS: W/Z+ ≤ 4j

III) Special processes, next-to-leading-order:
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• GRACE+Bases/Spring

Matrix-Elements Programs

Wide spectrum from “general-purpose” to “one-issue”, see e.g.
http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:
• MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

• CompHEP/CalcHEP (matrix-elements-based, ∼≤ 4 outgoing partons)
• Comix: part of SHERPA (Behrends-Giele recursion)
• HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:
• ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, . . .
• AcerMC: ttbb, . . .
• VECBOS: W/Z+ ≤ 4j

III) Special processes, next-to-leading-order:
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• GRACE+Bases/Spring

Note: NLO codes not yet 
generally interfaced 

to shower MCs

Slide from T. Sjöstrand
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10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability

287

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability

287

Splitting Functions

47

t0
(t1,z1)

(t2.z2)



QCD

P. Skands

Lecture
III

Altarelli-Parisi
(E.g., PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability

287

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability

287

Splitting Functions

47

t0
(t1,z1)

(t2.z2)

s



QCD

P. Skands

Lecture
III

Altarelli-Parisi
(E.g., PYTHIA)
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in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
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where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
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Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are
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1 + z2
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,
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,
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with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce
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where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now
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Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
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with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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Separation meaningful for collinear radiation, but not for soft …

Who emitted that gluon?

Real QFT = sum over amplitudes, then square → interference (IF coherence)
Respected by dipole/antenna languages (and by angular ordering), but not by 
conventional DGLAP
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p2 = t < 0

ISR:FSR:

p2  > 0

Virtualities are
Timelike: p2>0

Virtualities are
Spacelike: p2<0

Start at Q2 = QF2

“Forwards evolution”

Start at Q2 = QF2

Constrained backwards evolution
towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft …
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That way we hope to achieve the most realistic description of mass e⇥ects in the collinear
and soft regions.

The shower inherits some further elements from PYSHOW, such as azimuthal anisotropies
in gluon branchings from polarization e⇥ects.

The relevant parameters will have to be retuned, since the shower is quite di⇥erent
from the mass-ordered one of PYSHOW. In particular, it appears that the five-flavour �QCD

value in PARJ(81) has to be reduced relative to the current default, roughly by a factor
of two (from 0.29 to 0.14 GeV). After such a retuning, PYPTFS (combined with string
fragmentation) appears to give an even better description of LEP1 data than does PYSHOW
[Rud04].

10.3 Initial-State Showers

The initial-state shower algorithms in Pythia are not quite as sophisticated as the final-
state ones. This is partly because initial-state radiation is less well understood theoreti-
cally, and partly because the programming task is more complicated and ambiguous. Still,
the program at disposal is known to do a reasonably good job of describing existing data,
such as Z0 production properties at hadron colliders [Sjö85]. It can be used both for QCD
showers and for photon emission o⇥ leptons (e, µ or ⇤ ; relative to earlier versions, the
description of incoming µ and ⇤ are better geared to represent the di⇥erences in lepton
mass, and the lepton-inside-lepton parton distributions are properly defined).

Again we begin with a fairly model-independent overview before zooming in on the
old virtuality-ordered algorithm implemented in PYSSPA. The new transverse-momentum-
ordered formalism in PYPTIS, described at the end, shares much of the same philosophy,
apart from the quite important choice of evolution variable, of course.

10.3.1 The shower structure

A fast hadron may be viewed as a cloud of quasi-real partons. Similarly a fast lepton
may be viewed as surrounded by a cloud of photons and partons; in the program the two
situations are on an equal footing, but here we choose the hadron as example. At each
instant, each individual parton initiates a virtual cascade, branching into a number of
partons. This cascade of quantum fluctuations can be described in terms of a tree-like
structure, composed of many subsequent branchings a � bc. Each branching involves
some relative transverse momentum between the two daughters. In a language where
four-momentum is conserved at each vertex, this implies that at least one of the b and
c partons must have a space-like virtuality, m2 < 0. Since the partons are not on the
mass shell, the cascade only lives a finite time before reassembling, with those parts of
the cascade that are most o⇥ the mass shell living the shortest time.

A hard scattering, e.g. in deeply inelastic leptoproduction, will probe the hadron at a
given instant. The probe, i.e. the virtual photon in the leptoproduction case, is able to
resolve fluctuations in the hadron up to the Q2 scale of the hard scattering. Thus probes
at di⇥erent Q2 values will seem to see di⇥erent parton compositions in the hadron. The
change in parton composition with t = ln(Q2/�2) is given by the evolution equations

dfb(x, t)

dt
=

⇤

a,c

⌅ dx⇥

x⇥
fa(x

⇥, t)
�abc

2⇥
Pa�bc

�
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Here the fi(x, t) are the parton-distribution functions, expressing the probability of finding
a parton i carrying a fraction x of the total momentum if the hadron is probed at virtuality
Q2. The Pa�bc(z) are given in eq. (164). As before, �abc is �s for QCD shower and �em

for QED ones.
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step by step one moves ‘backwards’ in ‘time’, towards smaller Q2, all the way back to the
parton-shower initiator at the cut-o� scale Q2

0. This procedure is possible if evolved parton
distributions are used to select the hard scattering, since the fi(x, Q2) contain the inclusive
summation of all initial-state parton-shower histories that can lead to the appearance of
an interacting parton i at the hard scale. What remains is thus to select an exclusive
history from the set of inclusive ones. In this way, backwards evolution furnishes a very
clear and intuitive picture of the relationship between the inclusive (parton distributions)
and exclusive (initial-state showers) description of the same physics.

10.3.2 Longitudinal evolution

The evolution equations, eq. (187), express that, during a small increase dt, there is a
probability for parton a with momentum fraction x⇥ to become resolved into parton b
at x = zx⇥ and another parton c at x⇥ � x = (1 � z)x⇥. Correspondingly, in backwards
evolution, during a decrease dt a parton b may be ‘unresolved’ into parton a. The relative
probability dPb for this to happen is given by the ratio dfb/fb. Using eq. (187) one obtains

dPb =
dfb(x, t)

fb(x, t)
= |dt|
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Summing up the cumulative e�ect of many small changes dt, the probability for no radi-
ation exponentiates. Therefore one may define a form factor

Sb(x, tmax, t) = exp
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giving the probability that a parton b remains at x from tmax to a t < tmax.
It may be useful to compare this with the corresponding expression for forward evolu-

tion, i.e. with Sa(t) in eq. (166). The most obvious di�erence is the appearance of parton
distributions in Sb. Parton distributions are absent in Sa: the probability for a given
parton a to branch, once it exists, is independent of the density of partons a or b. The
parton distributions in Sb, on the other hand, express the fact that the probability for
a parton b to come from the branching of a parton a is proportional to the number of
partons a there are in the hadron, and inversely proportional to the number of partons b.
Thus the numerator fa in the exponential of Sb ensures that the parton composition of
the hadron is properly reflected. As an example, when a gluon is chosen at the hard scat-
tering and evolved backwards, this gluon is more likely to have been emitted by a u than
by a d if the incoming hadron is a proton. Similarly, if a heavy flavour is chosen at the
hard scattering, the denominator fb will vanish at the Q2 threshold of the heavy-flavour
production, which means that the integrand diverges and Sb itself vanishes, so that no
heavy flavour remain below threshold.

Another di�erence between Sb and Sa, already touched upon, is that the Pg�gg(z)
splitting kernel appears with a normalization 2NC in Sb but only with NC in Sa, since
two gluons are produced but only one decays in a branching.

A knowledge of Sb is enough to reconstruct the parton shower backwards. At each
branching a⇥ bc, three quantities have to be found: the t value of the branching (which
defines the space-like virtuality Q2

b of parton b), the parton flavour a and the splitting
variable z. This information may be extracted as follows:
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That way we hope to achieve the most realistic description of mass e⇥ects in the collinear
and soft regions.

The shower inherits some further elements from PYSHOW, such as azimuthal anisotropies
in gluon branchings from polarization e⇥ects.

The relevant parameters will have to be retuned, since the shower is quite di⇥erent
from the mass-ordered one of PYSHOW. In particular, it appears that the five-flavour �QCD

value in PARJ(81) has to be reduced relative to the current default, roughly by a factor
of two (from 0.29 to 0.14 GeV). After such a retuning, PYPTFS (combined with string
fragmentation) appears to give an even better description of LEP1 data than does PYSHOW
[Rud04].

10.3 Initial-State Showers

The initial-state shower algorithms in Pythia are not quite as sophisticated as the final-
state ones. This is partly because initial-state radiation is less well understood theoreti-
cally, and partly because the programming task is more complicated and ambiguous. Still,
the program at disposal is known to do a reasonably good job of describing existing data,
such as Z0 production properties at hadron colliders [Sjö85]. It can be used both for QCD
showers and for photon emission o⇥ leptons (e, µ or ⇤ ; relative to earlier versions, the
description of incoming µ and ⇤ are better geared to represent the di⇥erences in lepton
mass, and the lepton-inside-lepton parton distributions are properly defined).

Again we begin with a fairly model-independent overview before zooming in on the
old virtuality-ordered algorithm implemented in PYSSPA. The new transverse-momentum-
ordered formalism in PYPTIS, described at the end, shares much of the same philosophy,
apart from the quite important choice of evolution variable, of course.

10.3.1 The shower structure

A fast hadron may be viewed as a cloud of quasi-real partons. Similarly a fast lepton
may be viewed as surrounded by a cloud of photons and partons; in the program the two
situations are on an equal footing, but here we choose the hadron as example. At each
instant, each individual parton initiates a virtual cascade, branching into a number of
partons. This cascade of quantum fluctuations can be described in terms of a tree-like
structure, composed of many subsequent branchings a � bc. Each branching involves
some relative transverse momentum between the two daughters. In a language where
four-momentum is conserved at each vertex, this implies that at least one of the b and
c partons must have a space-like virtuality, m2 < 0. Since the partons are not on the
mass shell, the cascade only lives a finite time before reassembling, with those parts of
the cascade that are most o⇥ the mass shell living the shortest time.

A hard scattering, e.g. in deeply inelastic leptoproduction, will probe the hadron at a
given instant. The probe, i.e. the virtual photon in the leptoproduction case, is able to
resolve fluctuations in the hadron up to the Q2 scale of the hard scattering. Thus probes
at di⇥erent Q2 values will seem to see di⇥erent parton compositions in the hadron. The
change in parton composition with t = ln(Q2/�2) is given by the evolution equations
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Here the fi(x, t) are the parton-distribution functions, expressing the probability of finding
a parton i carrying a fraction x of the total momentum if the hadron is probed at virtuality
Q2. The Pa�bc(z) are given in eq. (164). As before, �abc is �s for QCD shower and �em

for QED ones.
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summation of all initial-state parton-shower histories that can lead to the appearance of
an interacting parton i at the hard scale. What remains is thus to select an exclusive
history from the set of inclusive ones. In this way, backwards evolution furnishes a very
clear and intuitive picture of the relationship between the inclusive (parton distributions)
and exclusive (initial-state showers) description of the same physics.

10.3.2 Longitudinal evolution

The evolution equations, eq. (187), express that, during a small increase dt, there is a
probability for parton a with momentum fraction x⇥ to become resolved into parton b
at x = zx⇥ and another parton c at x⇥ � x = (1 � z)x⇥. Correspondingly, in backwards
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Summing up the cumulative e�ect of many small changes dt, the probability for no radi-
ation exponentiates. Therefore one may define a form factor
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giving the probability that a parton b remains at x from tmax to a t < tmax.
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tion, i.e. with Sa(t) in eq. (166). The most obvious di�erence is the appearance of parton
distributions in Sb. Parton distributions are absent in Sa: the probability for a given
parton a to branch, once it exists, is independent of the density of partons a or b. The
parton distributions in Sb, on the other hand, express the fact that the probability for
a parton b to come from the branching of a parton a is proportional to the number of
partons a there are in the hadron, and inversely proportional to the number of partons b.
Thus the numerator fa in the exponential of Sb ensures that the parton composition of
the hadron is properly reflected. As an example, when a gluon is chosen at the hard scat-
tering and evolved backwards, this gluon is more likely to have been emitted by a u than
by a d if the incoming hadron is a proton. Similarly, if a heavy flavour is chosen at the
hard scattering, the denominator fb will vanish at the Q2 threshold of the heavy-flavour
production, which means that the integrand diverges and Sb itself vanishes, so that no
heavy flavour remain below threshold.

Another di�erence between Sb and Sa, already touched upon, is that the Pg�gg(z)
splitting kernel appears with a normalization 2NC in Sb but only with NC in Sa, since
two gluons are produced but only one decays in a branching.

A knowledge of Sb is enough to reconstruct the parton shower backwards. At each
branching a⇥ bc, three quantities have to be found: the t value of the branching (which
defines the space-like virtuality Q2

b of parton b), the parton flavour a and the splitting
variable z. This information may be extracted as follows:
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