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Introduction to QCD

1. Fundamentals of QCD

2. Jets and Fixed-Order QCD

3. Monte Carlo Generators and Showers

4. Matching at LO and NLO

5. QCD in the Infrared
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Factorization
Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

2

Illustration from T. Sjöstrand

Partons within clouds of 
further partons, constantly 
emitted and absorbed
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Partons within clouds of 
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For hadron to remain 
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suppresed by powers of 
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Mh : mass of hadron
k2 : virtuality of fluctuation
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at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

2

Illustration from T. Sjöstrand

→ Lifetime of fluctuations ~ 1/Mh 

Hard incoming probe interacts over much shorter time scale ~ 1/Q

On that timescale, partons ~ frozen 

Hard scattering knows nothing of the target hadron apart from the fact 
that it contained the struck parton

Partons within clouds of 
further partons, constantly 
emitted and absorbed

For hadron to remain 
intact, virtualities k2 < Mh2

 High-virtuality fluctuations 
suppresed by powers of 

αsM2
h

k2

Mh : mass of hadron
k2 : virtuality of fluctuation
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Factorization Theorem

In DIS, there is a formal proof of factorization 

3

(Collins, Soper, 1987)

−Q2

Lepton

Scattered
Lepton

Scattered
Quark

Deep Inelastic 
Scattering 

(DIS)

(By “deep”, we 
mean Q2>>Mh2) fi/h

σ̂
xi

f
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−Q2
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Scattered
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Scattered
Quark

Deep Inelastic 
Scattering 

(DIS)

(By “deep”, we 
mean Q2>>Mh2)

σ�h =
�

i

�

f

�
dxi

�
dΦf fi/h(xi, Q

2
F )

dσ̂�i→f (xi,Φf , Q2
F )

dxi dΦf

→ We really can write the cross section in factorized form :

fi/h

σ̂
xi
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→ We really can write the cross section in factorized form :

= PDFs
Assumption:

Q2 = QF2
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xi
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Note: Beyond LO, 

f can be more 
than one parton

Surprise Question:
What’s the color
factor for DIS?
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It’s just another crossing

4

(Hadronic Z Decay) (Drell & Yan, 1970)

e+e− → γ∗/Z → qq̄ qq̄ → γ∗/Z → �+�−

(DIS)

�q
γ∗/Z→ �q

In Out In Out In Out

Time

Color Factor:

Tr[δij ] = NC

(see Lecture I)

1

N2
C

Tr[δij ] =
1

NC

Color Factor:

(see Lecture I)

1

NC
Tr[δij ] = 1

Color Factor:
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(Factorization: Caveats)

1. The proof only includes the first term in an operator 
product expansion in  “twist” = mass dimension - spin

2. The proof only applies to inclusive cross sections

In e+e- , in DIS, and in Drell-Yan. For everything else: factorization ansatz

3. Scheme dependence

In practice limited to MSbar + variations of QF

4. Interpretation of PDFs as parton number densities 

Is only valid at Leading Order

5

→ Strictly speaking, only valid for Q2→∞. Neglects corrections of order 
�
ln
�
Q2/Λ2

��m<2n

Q2n
Higher Twist : (n=2 for DIS)



Parton Densities 

6
Image Credits: D. Leinweber
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Parton Densities

  sum over long-wavelength histories 
leading to a with xa at the scale Qi2

  

€ 

r 
p j = x

r 
P proton

Parton distribution 
functions (PDF)

Factorization

dσ

dX
=

�

a,b

�

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

dσ̂ab→f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f → X, Q2
i , Q

2
f)

20

(ISR)
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x

LHC Coverage
x and Q2
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x

LHC Coverage
x and Q2

Shape of f(x) unknown
(non-perturbative)

Different groups (CTEQ, MSTW, NNPDF, 
etc) use different ansätze

→ fit to measurements
Evolve to fixed small reference scale 

Q ≈ mproton 
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Evolution in Q2 by DGLAP
(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
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Require cross section independent of μF (at calculated order) → RGE

dfi(xi, µ2
F )

d lnµ2
F

= . . .
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LO vs NLO

10
-2

10
-1

1

10

10 2

10
-4

10
-3

10
-2

10
-1

x

xf
(x
,Q
2)

gLO

gNLO

uLO

uNLO

NLO matrix elements 
contain low-x 
enhancements (they are 
larger than LO×DGLAP) 

→ need less low-x PDFs

Q2 = (10 GeV)2

(+ momentum conservation 
→ more partons at high x 
→ larger cross sections)

(lo
ga

ri
th

m
ic

)

The “best fit” depends
on the matrix elements

you use when doing the fit

9
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LO vs NLO
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enhancements (they are 
larger than LO×DGLAP) 

→ need less low-x PDFs

Q2 = (10 GeV)2

(+ momentum conservation 
→ more partons at high x 
→ larger cross sections)

Relevant to use the right 
PDFs with the right 

Matrix Elements
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The “best fit” depends
on the matrix elements

you use when doing the fit
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Much debate recently on PDF errors

(Advanced) PDF Uncertainties

Attempt to propagate 
experimental errors through 

PDF fits → 68% CL

But “tensions” between 
different data sets

+ Different groups (CTEQ, 
MSTW, NNPDF, etc) use 

different ansätze for shape of 
f(x) at low-Q boundary

→ 90%, or something else?
MSTW08 LO 90%
MSTW08LO 68%

CTEQ6L1

Gluon PDF uncertainty, Q2 = (10 GeV)2

10
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Still, good to ≈ 10% even for LO gluon in 10-4 < x < 10-1 (bigger errors at lower Q2)

Much debate recently on PDF errors

(Advanced) PDF Uncertainties

Attempt to propagate 
experimental errors through 

PDF fits → 68% CL

But “tensions” between 
different data sets

+ Different groups (CTEQ, 
MSTW, NNPDF, etc) use 

different ansätze for shape of 
f(x) at low-Q boundary

→ 90%, or something else?
MSTW08 LO 90%
MSTW08LO 68%

CTEQ6L1

Gluon PDF uncertainty, Q2 = (10 GeV)2

10
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Factorization:  expresses the independence of long-wavelength (soft) 
emission on the nature of the hard (short-distance) process. 

Factorization Summary

11
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=
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i , Q
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f)
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i , Q

2
f)

20

Illustration by M. Mangano
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Fragmentation 
Function (FF)

(FSR and Hadronization)

+ (At H.O. each of these defined in a specific scheme, usually MS)
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Parton distribution 
functions (PDF)

Factorization

dσ

dX
=

�

a,b

�

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

dσ̂ab→f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f → X, Q2
i , Q

2
f)

20

(ISR)

Factorization

dσ

dX
=

�

a,b

�

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

dσ̂ab→f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f → X, Q2
i , Q

2
f)

20

  Sum over long-wavelength histories 
from      at Qf2 to X

Factorization

dσ

dX
=

�

a,b

�

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

dσ̂ab→f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f → X, Q2
i , Q

2
f)

20

Fragmentation 
Function (FF)

(FSR and Hadronization)

+ (At H.O. each of these defined in a specific scheme, usually MS)

11
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Distribution of observable: O
In production of X + anything

Phase Space

QCD at Fixed Order

12

Cross Section 
differentially in O

Matrix Elements
for X+k at (l) loops

Sum over identical
amplitudes, then square

Evaluate observable 
→ differential in O

Momentum
configuration

k = 0, � = 0

dσ

dO

����
ME

=
�

k=0

�
dΦX+k

�����
�

�=0

M (�)
X+k

�����

2

δ
�
O −O({p}X+k)

�Fixed Order
(All Orders)

Sum over 
“anything” ≈ legs
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Distribution of observable: O
In production of X + anything

Phase Space

QCD at Fixed Order

12

Cross Section 
differentially in O

Matrix Elements
for X+k at (l) loops

Sum over identical
amplitudes, then square

Evaluate observable 
→ differential in O

Momentum
configuration

Truncate at                     ,
→ Born Level = First Term
Lowest order at which X happens

k = 0, � = 0

dσ

dO

����
ME

=
�

k=0

�
dΦX+k

�����
�

�=0

M (�)
X+k

�����

2

δ
�
O −O({p}X+k)

�Fixed Order
(All Orders)

Sum over 
“anything” ≈ legs



QCD

P. Skands

Lecture
II

Distribution of observable: O
In production of X + anything

Phase Space

QCD at Fixed Order

13

Sum over 
“anything” ≈ legs

Cross Section 
differentially in O

Matrix Elements
for X+k at (l) loops

Sum over identical
amplitudes, then square

Evaluate observable 
→ differential in O

Momentum
configuration

Truncate at                     ,
→ Leading Order for X + n

Lowest order at which X + n happens

k = n, � = 0

dσ

dO

����
ME

=
�

k=0

�
dΦX+k

�����
�

�=0

M (�)
X+k

�����

2

δ
�
O −O({p}X+k)

�Fixed Order
(All Orders)
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Distribution of observable: O
In production of X + anything

Phase Space

QCD at Fixed Order

14

Cross Section 
differentially in O

Matrix Elements
for X+k at (l) loops

Sum over identical
amplitudes, then square

Evaluate observable 
→ differential in O

Momentum
configuration

Truncate at                 ,
→ NnLO for X

Includes Nn-1LO for X+1, Nn-2LO for X+2, …

k + � = n

Sum over 
“anything” ≈ legs

dσ

dO

����
ME

=
�

k=0

�
dΦX+k

�����
�

�=0

M (�)
X+k

�����

2

δ
�
O −O({p}X+k)

�Fixed Order
(All Orders)
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Another representation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs
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Loops and Legs

Another representation

16

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Born

(1882-1970)
Nobel Prize 1954
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Loops and Legs

Another representation

17

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

X @ NLO
(includes X+1 @ LO)

Note: X+1 jet 
observables 

only correct at 
LO
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Loops and Legs

Another representation

18

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

X @ NNLO
(includes X+1 @ NLO)
(includes X+2 @ LO)

Note: X+2 jet 
observables 

only correct at 
LO

Note: X+1 jet 
observables 

only correct at 
NLO
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LO, NLO, etc

σBorn =

�
|M (0)

X |2

σLO

X+1(R) =

�

R
|M (0)

X+1
|2

σNLO

X = σBorn +

�
|M (0)

X+1
|2 +

�
2Re[M (1)

X M (0)∗
X ]

σNLO

X =

�
|M (0)

X |2 +

�
|M (0)

X+1
|2 +

�
2Re[M (1)

X M (0)∗
X ]

σNLO

X = σBorn+Finite

��
|M (0)

X+1
|2
�

+Finite

��
2Re[M (1)

X M (0)∗
X ]

�

σNLO

X = σBorn(1 + K)

σNNLO

X = σNLO

X +

� �
|M (1)

X |2 + 2Re[M (2)

X M (0)∗
X ]

�
+

�
2Re[M (1)

X+1
M (0)∗

X+1
]+

�
|M (0)

X+2
|2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)
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Born:

Born + n

Infrared divergent → Must be regulated
R = some Infrared Safe phase space region

(Often a cut on p⊥ > n GeV)

Careful not to take it too low!

Cross sections at LO

19

LO, NLO, etc

σBorn =
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X |2
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|M (0)

X+1
|2
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|M (0)
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|2
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2Re[M (1)

X M (0)∗
X ]

�

σNLO

X = σBorn(1 + K)

σNNLO

X = σNLO

X +

� �
|M (1)

X |2 + 2Re[M (2)

X M (0)∗
X ]

�
+

�
2Re[M (1)

X+1
M (0)∗

X+1
]+

�
|M (0)

X+2
|2

14

LO, NLO, etc

σBorn =

�
|M (0)

X |2

σLO

X+1(R) =

�

R
|M (0)

X+1
|2

σNLO

X = σBorn +

�
|M (0)

X+1
|2 +

�
2Re[M (1)

X M (0)∗
X ]

σNLO

X =

�
|M (0)

X |2 +
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|M (0)

X+1
|2 +
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2Re[M (1)

X M (0)∗
X ]

σNLO

X = σBorn+Finite
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|M (0)

X+1
|2
�

+Finite

��
2Re[M (1)

X M (0)∗
X ]

�

σNLO

X = σBorn(1 + K)

σNNLO

X = σNLO

X +

� �
|M (1)

X |2 + 2Re[M (2)

X M (0)∗
X ]

�
+

�
2Re[M (1)

X+1
M (0)∗

X+1
]+

�
|M (0)

X+2
|2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z → 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)
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Born + n

Infrared divergent → Must be regulated
R = some Infrared Safe phase space region

(Often a cut on p⊥ > n GeV)

Careful not to take it too low!

Cross sections at LO
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+Finite

��
2Re[M (1)
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�

σNLO

X = σBorn(1 + K)

σNNLO

X = σNLO

X +

� �
|M (1)

X |2 + 2Re[M (2)

X M (0)∗
X ]

�
+

�
2Re[M (1)

X+1
M (0)∗

X+1
]+

�
|M (0)

X+2
|2
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LO, NLO, etc

σBorn =

�
|M (0)

X |2

σLO

X+1(R) =
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R
|M (0)

X+1
|2

σNLO

X = σBorn +
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|M (0)

X+1
|2 +

�
2Re[M (1)
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X =
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X+2
|2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z → 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

if σ(X+n) ≈ σ(X) you got a problem
perturbative expansion not reliable
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Naively, brems suppressed by αs≈0.1

Truncate at fixed order = LO, NLO, …
But beware the jet-within-a-jet-within-a-jet …

Recall: Conformal QCD

100 GeV can be “soft” at the LHC

! Naively, brems suppressed by !s ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1 ! can’t truncate! 

! Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
"  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
"  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total !, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger than 
naive estimate

! Naively, brems suppressed by !s ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1 ! can’t truncate! 

! Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
"  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
"  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total !, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for 50 GeV jets ≈ larger than 
total cross section → not under 

control

Example: 

SUSY pair production at 14 TeV, with MSUSY ≈ 600 GeV 

→ More on this in lectures 
on Monte Carlo & Matching
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NLO:

Cross sections at NLO

21

Z → 2 1-loop:

qk

qi

qk

gik
a

qi

qk

qk

16

(note: this is not the 1-loop diagram squared)

LO, NLO, etc

σBorn =

�
|M (0)

X |2

σLO

X+1(R) =

�

R
|M (0)

X+1
|2

σNLO

X = σBorn +

�
|M (0)

X+1
|2 +

�
2Re[M (1)

X M (0)∗
X ]

σNLO

X =

�
|M (0)

X |2 +

�
|M (0)

X+1
|2 +

�
2Re[M (1)

X M (0)∗
X ]

σNLO

X = σBorn+Finite

��
|M (0)

X+1
|2
�

+Finite

��
2Re[M (1)

X M (0)∗
X ]

�

σNLO

X = σBorn(1 + K)

σNNLO

X = σNLO

X +

� �
|M (1)

X |2 + 2Re[M (2)

X M (0)∗
X ]

�
+

�
2Re[M (1)

X+1
M (0)∗

X+1
]+

�
|M (0)

X+2
|2

14

Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z → 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)
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σNLO(e
+e− → qq̄) = σLO(e

+e− → qq̄)

�
1 +

αs(ECM)

π
+O(α2

s)

�

NLO:

KLN Theorem (Kinoshita-Lee-Nauenberg)

Singularities cancel at complete order (only finite terms left over)

Cross sections at NLO

21

Z → 2 1-loop:
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qi
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gik
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qi

qk

qk

16

(note: this is not the 1-loop diagram squared)

LO, NLO, etc

σBorn =
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Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z → 3 jets:

qk

qi

qi
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LO, NLO, etc

σBorn =
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|M (0)

X |2

σLO

X+1(R) =
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|2

σNLO
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� �
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X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)
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The Subtraction Idea

How do I get finite{Real} and finite{Virtual} ?

First step: classify IR singularities using universal functions

EXAMPLE: factorization of amplitudes in the soft limit 

22

1 1

i

j

k

I

i
j

k

I

m+1 m+1

K

K

Figure 3: Illustration of NLO antenna factorisation representing the factorisation of both the
squared matrix elements and the (m + 1)-particle phase space. The term in square brackets repre-
sents both the antenna function X0

ijk and the antenna phase space dΦXijk
.

+
∑

j

Dkj,i |Mm((p1, . . . , p̃i, p̃kj , . . . , pm+1)|2 J (m)
m (p1, . . . , p̃i, p̃kj , . . . , pm+1)

]

.

(2.7)

In the first term, the dipole contribution involves the m-parton amplitude which only

depends on the redefined on-shell momenta p1, . . . , p̃ij , p̃k, . . . , pm+1 and the dipole function

Dij,k which depends on pi, pj , pk. The momenta pi, pj and pk are respectively the emitter,

unresolved parton and the spectator momenta corresponding to a single dipole term. In

the second term, the role of emitter and spectator are exchanged. The redefined on-

shell momenta p̃ij, p̃k (p̃kj , p̃i) are different linear combinations of pi, pj and pl for each

dipole. In the antenna approach, the momentum mapping would be the same for each

dipole contribution and the two terms combine to form the tree antenna, X0
ijk. The two

dipoles combining to an antenna have a common unresolved parton, and contain the two

possible emitter/spectator combinations. In the antenna language, emitter and spectator

act as radiators. Note that we can always choose to divide the antenna and use different

momentum maps for the two parts.

The jet function J (m)
m in (2.6) does not depend on the individual momenta pi, pj and

pk, but only on p̃I , p̃K . One can therefore carry out the integration over the unresolved

dipole phase space appropriate to pi, pj and pk analytically, exploiting the factorisation of

the phase space,

dΦm+1(p1, . . . , pm+1; q) = dΦm(p1, . . . , p̃I , p̃K , . . . , pm+1; q) · dΦXijk
(pi, pj , pk; p̃I + p̃K) .

(2.8)

The NLO antenna phase space dΦXijk
is proportional to the three-particle phase space,

as can be seen by using m = 2 in the above formula and exploiting the fact that the

two-particle phase space is a constant,

P2 =

∫
dΦ2 = 2−3+2επ−1+ε Γ(1 − ε)

Γ(2 − 2ε)

(
q2

)−ε
, (2.9)

such that

dΦ3 = P2 dΦXijk
. (2.10)

– 8 –

Mm+1 MmSoft Limit
(Ej → 0):
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First step: classify IR singularities using universal functions
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sents both the antenna function X0
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]

.

(2.7)

In the first term, the dipole contribution involves the m-parton amplitude which only

depends on the redefined on-shell momenta p1, . . . , p̃ij , p̃k, . . . , pm+1 and the dipole function

Dij,k which depends on pi, pj , pk. The momenta pi, pj and pk are respectively the emitter,

unresolved parton and the spectator momenta corresponding to a single dipole term. In

the second term, the role of emitter and spectator are exchanged. The redefined on-

shell momenta p̃ij, p̃k (p̃kj , p̃i) are different linear combinations of pi, pj and pl for each

dipole. In the antenna approach, the momentum mapping would be the same for each

dipole contribution and the two terms combine to form the tree antenna, X0
ijk. The two

dipoles combining to an antenna have a common unresolved parton, and contain the two

possible emitter/spectator combinations. In the antenna language, emitter and spectator

act as radiators. Note that we can always choose to divide the antenna and use different

momentum maps for the two parts.

The jet function J (m)
m in (2.6) does not depend on the individual momenta pi, pj and

pk, but only on p̃I , p̃K . One can therefore carry out the integration over the unresolved

dipole phase space appropriate to pi, pj and pk analytically, exploiting the factorisation of

the phase space,

dΦm+1(p1, . . . , pm+1; q) = dΦm(p1, . . . , p̃I , p̃K , . . . , pm+1; q) · dΦXijk
(pi, pj , pk; p̃I + p̃K) .

(2.8)

The NLO antenna phase space dΦXijk
is proportional to the three-particle phase space,

as can be seen by using m = 2 in the above formula and exploiting the fact that the

two-particle phase space is a constant,

P2 =

∫
dΦ2 = 2−3+2επ−1+ε Γ(1 − ε)

Γ(2 − 2ε)

(
q2

)−ε
, (2.9)

such that

dΦ3 = P2 dΦXijk
. (2.10)

– 8 –
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Figure 2: Illustration of the dampening of the collinear singularity for Z → QgQ̄: squared matrix elements with

(thick) and without (thin) mass corrections, normalized to the massless case, as a function of the opening angle

between the quark and the gluon, for constant Eg = 10GeV and mQ = 4.8GeV.

framework presented in [13, 14] (and in the dipole formalism [30] that predates it), the main building

blocks, massive antenna (dipole) functions and phase-space factorizations, are therefore constructed

so as to reproduce exactly the quasi-collinear and soft behaviours of real radiation matrix-elements in

the corresponding limits. For cross sections which are well-behaved in the massless limit, the explicit

cancellations of the ln(Q2/m2)-terms also ensure numerical stability in the limit m → 0.

For some observables which are not infrared safe in their massless limit, such as ones sensitive to

the details of the fragmentation process for example, the cancellation of the mass-dependent logarithms

is incomplete. Terms of the form αn
S lnn(Q2/m2) appear in every order of the expansion. In the case

of a large hierarchy m � Q, these terms jeopardize the convergence of the perturbative series. It is

necessary to resum them to all orders to obtain a meaningful result, as is done, for example, for the b-
quark fragmentation process in [33], to which we compare the massive VINCIA dipole-antenna shower

in section 5. However, in order to construct this shower, we must first consider the soft and quasi-

collinear limits more carefully and define how the massless splitting functions and soft Eikonal factors

are generalized in the presence of massive particles.

The infrared singularity properties of tree-level colour-ordered matrix elements involving only mass-

less partons have been well studied in [31]. In the limit where a gluon j is soft with respect to its

neighbouring partons i and k, the colour-ordered matrix-elements squared |Mn+1|2 for (n+1) partons

factorizes into a universal soft Eikonal factor Sijk and a colour-ordered tree-level squared amplitude

where gluon j has been removed. For the squared amplitudes we have,

|Mn+1(1, · · · , i, j, k, · · · , n+ 1)|2 jg→0−−−→ g2sCijk Sijk |Mn(1, · · · , i, k, · · · , n+ 1)|2 (28)

where g2s = 4παs is the strong coupling, Cijk is a colour factor that tends to NC in the leading-colour

limit, and the massless Eikonal factor is given by

Sijk =
2sik
sijsjk

. (29)

Similarly when two neighbouring gluons or a quark and a gluon become collinear the colour-ordered

matrix elements factorize. Depending on the nature of the partons involved different collinear factors

9

are obtained. Partons which are not colour-connected do not lead to singular behaviours of the colour
ordered matrix-elements squared, hence the soft or collinear factors only involve the neighbouring par-
ticles to which the unresolved particle is colour-connected.

In the massive case, essentially the same factorization properties still hold, provided the collinear
limit is generalized to the quasi-collinear limit (see below). For the emission of a soft gluon from
massive radiators, the factorization of the matrix element into a soft Eikonal factor times a reduced
matrix element with the soft gluon omitted works in the same way as for massless partons. The soft
Eikonal factor given in equation (29) needs however to be generalized. Written in terms of the parent
parton masses mI and mK and the invariants between the daughter partons i, j and k, the massive soft
Eikonal factor reads

Sijk(mI ,mK) =
2sik
sijsjk

− 2m2
I

s2ij
− 2m2

K

s2jk
(30)

which has two new mass-dependent terms compared to the massless Eikonal factor defined above.
The quasi-collinear limit of a massive parton with momentum pµ decaying into two massive partons

j and k is given by,
pµj → z pµ, pµk → (1− z) pµ, (31)

p2 = m2
(jk). (32)

with the constraints,
pj · pk,mj ,mk,mjk → 0 (33)

at fixed ratios,
m2

j

pj · pk
,

m2
k

pj · pk
,

m2
jk

pj · pk
. (34)

The key difference between the massless collinear limit and the quasi-collinear limit is given by
the constraint that the on-shell masses squared have to be kept of the same order as the invariant mass
(pj + pk)2, with the latter becoming small. In these corresponding quasi-collinear limits, the colour-
ordered (m + 1)-parton matrix element squared factorizes into a reduced m-parton matrix element
squared multiplied by quasi-collinear splitting functions, the latter are generalizations of the Altarelli-
Parisi splitting functions [34] from which they differ by mass-dependent terms. In four dimensions, they
read

Pqg→Q(z,mq, sqg) =
1 + (1− z)2

z
−

2m2
q

sqg
,

Pqq̄→G(z,mq, sqq̄) = z2 + (1− z)2 −
2m2

q

sqq̄ + 2m2
q
.

(35)

We now turn to a description of the full massive dipole-antenna functions as implemented in VINCIA.

2.5 Massive dipole-antenna functions

In general, the full forms of the dipole-antenna functions are obtained by normalizing a three-parton
tree-level matrix-element squared to a corresponding two-parton squared matrix element, stripped of all

10

Universal
“Soft Eikonal” 

sij ≡ 2pi · pj
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yield configurations where a certain number of essentially non-interacting particles are

emitted between a pair of hard radiators. By carrying out the colour algebra, it becomes

evident that non-ordered gluon emission inside a colour-ordered system is equivalent to

photon emission off the outside legs of the system [18,42]. For simplicity, these subleading

colour contributions are also denoted as squared matrix elements |Mm|2, although they

often correspond purely to interference terms between different amplitudes.

The precise definition depends on the number and types of particles involved in the

process. However, all colour orderings are summed over in
∑

m with the appropriate colour

weighting. The jet function J (n)
m defines the procedure for building m jets out of n partons.

The main property of J (n)
m is that the jet observable defined above is collinear and infrared

safe as explained in [39, 40]. In general J (n)
m contains θ and δ-functions. J (n)

m can also

represent the definition of the n-parton contribution to an event shape observable related

to m-jet final states.

From (2.1), one obtains the leading order approximation to the m-jet cross section by

integration over the appropriate phase space.

dσLO =

∫

dΦm

dσB . (2.3)

Depending on the jet function used, this cross section can still be differential in certain

kinematical quantities.

2.1 NLO infrared subtraction terms

At NLO, we consider the following m-jet cross section,

dσNLO =

∫

dΦm+1

(
dσR

NLO − dσS
NLO

)
+

[∫

dΦm+1

dσS
NLO +

∫

dΦm

dσV
NLO

]

. (2.4)

The cross section dσR
NLO has the same expression as the Born cross section dσB

NLO (2.1)

above except that m → m + 1, while dσV
NLO is the one-loop virtual correction to the m-

parton Born cross section dσB . The cross section dσS
NLO is a (preferably local) counter-term

for dσR
NLO. It has the same unintegrated singular behaviour as dσR

NLO in all appropriate

limits. Their difference is free of divergences and can be integrated over the (m+1)-parton

phase space numerically. The subtraction term dσS
NLO has to be integrated analytically

over all singular regions of the (m + 1)-parton phase space. The resulting cross section

added to the virtual contribution yields an infrared finite result.

A systematic procedure for finding NLO infrared subtraction terms is the antenna

formalism introduced in [10, 41]. The antenna subtraction terms are obtained as sum of

antennae:

dσS
NLO = N

∑

m+1

dΦm+1(p1, . . . , pm+1; q)
1

Sm+1

×
∑

j

X0
ijk |Mm(p1, . . . , p̃I , p̃K , . . . , pm+1)|2 J (m)

m (p1, . . . , p̃I , p̃K , . . . , pm+1) , (2.5)

– 6 –

Finite by Universality Finite by KLN

Dipoles (Catani-
Seymour)
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Gehrmann-de Ridder, 
Glover)
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LO, NLO, etc

σBorn =
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|M (0)

X |2

σLO

X+1(R) =

�
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|M (0)

X+1
|2

σNLO

X = σBorn +

�
|M (0)

X+1
|2 +

�
2Re[M (1)

X M (0)∗
X ]

σNLO

X =

�
|M (0)

X |2 +

�
|M (0)

X+1
|2 +

�
2Re[M (1)

X M (0)∗
X ]
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X = σBorn+Finite
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|M (0)

X+1
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+Finite

��
2Re[M (1)

X M (0)∗
X ]

�

σNLO

X = σBorn(1 + K)

σNNLO
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|M (1)

X |2 + 2Re[M (2)

X M (0)∗
X ]
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+

�
2Re[M (1)
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1-Loop × 1-Loop

Z → 2 2-loop:
qk

qi

qj

gij
a

qk

gjk
b

qj

qi

qk

qk

17

Z → 2 1-loop squared:

qk

qi

qk

gik
a

qi

qk

qi

qk

gik
a

qi

18

Z → 2 1-loop squared:

qj

qi

qk

gik
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qi
gjk
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qj

qk

qk

gjk
a

18

Z → 4:
qj

qi

qk

gik
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qi
gij

b

qj

qi

qk

gik
a

qi
gij

b

19

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)

Two-Loop × Born Interference

1-Loop × Real (X+1)

Real × Real (X+2)
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Regularization of IR and UV divergences

E.g., using dimensional reg → unphysical scales μF and μR

These are artificial scales we introduce, to handle the calculation

At infinite order (+ non-pert), all dependence on them must vanish

But in a fixed-order truncation, a residual dependence remains

Recall: Scale Dependence
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Regularization of IR and UV divergences

E.g., using dimensional reg → unphysical scales μF and μR

These are artificial scales we introduce, to handle the calculation

At infinite order (+ non-pert), all dependence on them must vanish

But in a fixed-order truncation, a residual dependence remains

Why scale variation ~ uncertainty?

Any scale dependence of calculated orders must be canceled by the 
contribution from the uncalculated orders (+ non-pert)

Next order must include at least a term that exactly cancels this one 
(in addition to whatever other terms the next order also contains)

Recall: Scale Dependence

25
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�
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2)|M |2 + . . .
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Jets as Projections
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QCD lecture 4 (p. 19)

Jets Jets as projections

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

! !

K
p "

Projection to jets provides “universal” view of event

Illustrations by G. Salam

Projections to jets provides a universal view of event

LO partons NLO partons Parton Shower Hadron Level
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YOU decide how to look at event

The construction of jets is inherently ambiguous
1. Which particles get grouped together?

JET ALGORITHM (+ parameters)

2. How will you combine their momenta?

RECOMBINATION SCHEME (e.g., ‘E’ scheme: add 4-momenta)

28

Jet Definition
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There is no unique or “best” jet definition

YOU decide how to look at event

The construction of jets is inherently ambiguous
1. Which particles get grouped together?

JET ALGORITHM (+ parameters)

2. How will you combine their momenta?

RECOMBINATION SCHEME (e.g., ‘E’ scheme: add 4-momenta)

28

Ambiguity complicates life, but gives flexibility 
in one’s view of events → Jets non-trivial!

Jet Definition
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(you’ll hear more in lectures on Jet Substructure)
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Types of Algorithms

1. Sequential Recombination

29

Take your 4-vectors. Combine the ones that have the lowest 
‘distance measure’ 

Different names for different distance measures

Durham kT :

Cambridge/Aachen :

Anti-kT : 

ArClus (3→2):  

→ New set of (n-1) 4-vectors

∆R2
ij

∆R2
ij/ max(k2

Ti, k
2
Tj)

∆R2
ij ×min(k2

Ti, k
2
Tj)

p2
⊥ = sijsjk/sijk

k2
Ti = E2

i (1− cos θij)

∆R2
ij = (ηi − ηj)2 + ∆φ2

ij

+ Prescription for how to 
combine 2 momenta into 1

(or 3 momenta into 2)

(you’ll hear more in lectures on Jet Substructure)
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1. Sequential Recombination

29

Iterate until A or B (you choose which): 
A: all distance measures larger than something
B: you reach a specified number of jets

Look at event at: 

specific njets

specific resolution

Take your 4-vectors. Combine the ones that have the lowest 
‘distance measure’ 

Different names for different distance measures

Durham kT :

Cambridge/Aachen :

Anti-kT : 

ArClus (3→2):  

→ New set of (n-1) 4-vectors

∆R2
ij

∆R2
ij/ max(k2

Ti, k
2
Tj)

∆R2
ij ×min(k2

Ti, k
2
Tj)

p2
⊥ = sijsjk/sijk

k2
Ti = E2

i (1− cos θij)

∆R2
ij = (ηi − ηj)2 + ∆φ2

ij

+ Prescription for how to 
combine 2 momenta into 1

(or 3 momenta into 2)

(you’ll hear more in lectures on Jet Substructure)
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Why kT (or pT or ∆R)?

Attempt to (approximately) capture universal jet-
within-jet-witin-jet… behavior

Approximate full matrix element

by Leading-Log limit of QCD → universal dominant terms

30

|M (0)
X+1(si1, s1k, s)|2

|M (0)
X (s)|2

∼ 4παsCF

�
2sik

si1s1k
+ ...

�

dsi1ds1k

si1s1k
∼ dp2

⊥
p2
⊥

dz

z(1− z)
∼ dE1

min(Ei, E1)

dθi1

θi1
(E1 � Ei, θi1 � 1)

30

“Eikonal”
(universal, always there)

,...

|M (0)
X+1(si1, s1k, s)|2

|M (0)
X (s)|2

∼ 4παsCF

�
2sik

si1s1k
+ ...

�

dsi1ds1k

si1s1k
→ dp2

⊥
p2
⊥

dz

z(1− z)
→ dE1

min(Ei, E1)

dθi1

θi1
(E1 � Ei, θi1 � 1)

30

Rewritings in soft/collinear limits

“smallest” kT (or pT or θij, or …) → largest Eikonal

=
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2. “Cone” type

Types of Algorithms

31

Take your 4-vectors. Select a procedure for which “test cones” 
to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations 
thereof, e.g., CDF midpoint algorithm) = “seeds”

Unseeded : smoothly scan over entire event, trying everything

Sum momenta inside test cone → new test cone direction

Iterate until stable (test cone direction = momentum sum direction)
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2. “Cone” type

Types of Algorithms

31

Warning: seeded algorithms are INFRARED UNSAFE

Take your 4-vectors. Select a procedure for which “test cones” 
to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations 
thereof, e.g., CDF midpoint algorithm) = “seeds”

Unseeded : smoothly scan over entire event, trying everything

Sum momenta inside test cone → new test cone direction

Iterate until stable (test cone direction = momentum sum direction)
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Definition

An observable is infrared safe if it is insensitive to

SOFT radiation: 

Adding any number of infinitely soft particles (zero-energy) 
should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two comoving particles 
(conserving the total momentum and energy) should not change 
the value of the observable
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appears to be able to account for. It therefore appears plausible that a universal modeling of the underly-
ing event must take into account that the hard-scattering and underlying-event components can involve
similar time scales and have a common, correlated evolution. It is in this spirit that the concept of “in-
terleaved evolution” [12] was developed as the cornerstone of the p⊥-ordered models [12, 13] in both
PYTHIA 6 [14] and, more recently, PYTHIA 8 [15], the latter of which now also incorporates a model of
parton rescattering [16].

The second tool, infrared safety1, provides us with a class of observables which are insensitive to
the details of the long-distance physics. This works up to corrections of order the long-distance scale
divided by the short-distance scale to some (observable-dependent) power, typically

IR Safe Corrections ∝
Q2

IR

Q2
UV

(1)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV). Of course,
in minimum-bias, we typically have Q2

UV ∼ Q2
IR, wherefore all observables depend significantly on

the IR physics (or in other words, when IR physics is all there is, then any observable, no matter how
carefully defined, depends on it).

Even when a high scale is present, as in resonance decays, jet fragmentation, or underlying-event-
type studies, infrared safety only guarantees us that infrared corrections are small, not that they are zero.
Thus, ultimately, we run into a precision barrier even for IR safe observables, which only a reliable
understanding of the long-distance physics itself can address.

Finally, there are the non-infrared-safe observables. Instead of the suppressed corrections above,
such observables contain logarithms

IR Sensitive Corrections ∝ αn
s log

m

(

Q2
UV

Q2
IR

)

, m ≤ 2n , (2)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental quantity
as particle multiplicities; in the absence of nontrivial infrared effects, the number of partons that would
be mapped to hadrons in a naı̈ve local-parton-hadron-duality [17] picture would tend logarithmically to
infinity as the IR cutoff is lowered. Similarly, the distinction between a charged and a neutral pion only
occurs in the very last phase of hadronisation, and hence observables that only include charged tracks
are always IR sensitive.

Minimum-bias (MB) and Underlying-Event (UE) physics can therefore be perceived of as offering
an ideal lab for studying nonfactorised and nonperturbative phenomena, with the added benefit of having
access to the highest possible statistics in the case of min-bias. In this context there is no strong prefer-
ence for IR safe over IR sensitive observables; they merely represent two different lenses through which
we can view the infrared physics, each revealing different aspects. By far the most important point is
that it is in their combination that we achieve a sort of stereo vision, in which infrared safe observables
measuring the overall energy flow are simply the slightly averaged progenitors of the spectra and cor-
relations that appear at the level of individual particles. A systematic programme of such studies can
give crucial tests of our ability to model and understand these ubiquitous components, and the resulting
improved physics models can then be fed back into the modeling of high-p⊥ physics.

1By “infrared” we here mean any non-UV limit, without regard to whether it is collinear or soft.

2

Unsafe: badly divergent in pQCD → large IR corrections:

Even if we have a hadronization model with which to compute 
these corrections, the dependence on it → larger uncertainty

appears to be able to account for. It therefore appears plausible that a universal modeling of the underly-
ing event must take into account that the hard-scattering and underlying-event components can involve
similar time scales and have a common, correlated evolution. It is in this spirit that the concept of “in-
terleaved evolution” [12] was developed as the cornerstone of the p⊥-ordered models [12, 13] in both
PYTHIA 6 [14] and, more recently, PYTHIA 8 [15], the latter of which now also incorporates a model of
parton rescattering [16].

The second tool, infrared safety1, provides us with a class of observables which are insensitive to
the details of the long-distance physics. This works up to corrections of order the long-distance scale
divided by the short-distance scale to some (observable-dependent) power, typically

IR Safe Corrections ∝
Q2

IR

Q2
UV

(1)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV). Of course,
in minimum-bias, we typically have Q2

UV ∼ Q2
IR, wherefore all observables depend significantly on

the IR physics (or in other words, when IR physics is all there is, then any observable, no matter how
carefully defined, depends on it).

Even when a high scale is present, as in resonance decays, jet fragmentation, or underlying-event-
type studies, infrared safety only guarantees us that infrared corrections are small, not that they are zero.
Thus, ultimately, we run into a precision barrier even for IR safe observables, which only a reliable
understanding of the long-distance physics itself can address.

Finally, there are the non-infrared-safe observables. Instead of the suppressed corrections above,
such observables contain logarithms

IR Sensitive Corrections ∝ αn
s log

m

(

Q2
UV

Q2
IR

)

, m ≤ 2n , (2)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental quantity
as particle multiplicities; in the absence of nontrivial infrared effects, the number of partons that would
be mapped to hadrons in a naı̈ve local-parton-hadron-duality [17] picture would tend logarithmically to
infinity as the IR cutoff is lowered. Similarly, the distinction between a charged and a neutral pion only
occurs in the very last phase of hadronisation, and hence observables that only include charged tracks
are always IR sensitive.

Minimum-bias (MB) and Underlying-Event (UE) physics can therefore be perceived of as offering
an ideal lab for studying nonfactorised and nonperturbative phenomena, with the added benefit of having
access to the highest possible statistics in the case of min-bias. In this context there is no strong prefer-
ence for IR safe over IR sensitive observables; they merely represent two different lenses through which
we can view the infrared physics, each revealing different aspects. By far the most important point is
that it is in their combination that we achieve a sort of stereo vision, in which infrared safe observables
measuring the overall energy flow are simply the slightly averaged progenitors of the spectra and cor-
relations that appear at the level of individual particles. A systematic programme of such studies can
give crucial tests of our ability to model and understand these ubiquitous components, and the resulting
improved physics models can then be fed back into the modeling of high-p⊥ physics.

1By “infrared” we here mean any non-UV limit, without regard to whether it is collinear or soft.

2

Safe → IR corrections power suppressed:
Can still be computed (MC) but 
can also be neglected (pure pQCD)
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appears to be able to account for. It therefore appears plausible that a universal modeling of the underly-
ing event must take into account that the hard-scattering and underlying-event components can involve
similar time scales and have a common, correlated evolution. It is in this spirit that the concept of “in-
terleaved evolution” [12] was developed as the cornerstone of the p⊥-ordered models [12, 13] in both
PYTHIA 6 [14] and, more recently, PYTHIA 8 [15], the latter of which now also incorporates a model of
parton rescattering [16].

The second tool, infrared safety1, provides us with a class of observables which are insensitive to
the details of the long-distance physics. This works up to corrections of order the long-distance scale
divided by the short-distance scale to some (observable-dependent) power, typically

IR Safe Corrections ∝
Q2

IR

Q2
UV

(1)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV). Of course,
in minimum-bias, we typically have Q2

UV ∼ Q2
IR, wherefore all observables depend significantly on

the IR physics (or in other words, when IR physics is all there is, then any observable, no matter how
carefully defined, depends on it).

Even when a high scale is present, as in resonance decays, jet fragmentation, or underlying-event-
type studies, infrared safety only guarantees us that infrared corrections are small, not that they are zero.
Thus, ultimately, we run into a precision barrier even for IR safe observables, which only a reliable
understanding of the long-distance physics itself can address.

Finally, there are the non-infrared-safe observables. Instead of the suppressed corrections above,
such observables contain logarithms

IR Sensitive Corrections ∝ αn
s log

m

(

Q2
UV

Q2
IR

)

, m ≤ 2n , (2)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental quantity
as particle multiplicities; in the absence of nontrivial infrared effects, the number of partons that would
be mapped to hadrons in a naı̈ve local-parton-hadron-duality [17] picture would tend logarithmically to
infinity as the IR cutoff is lowered. Similarly, the distinction between a charged and a neutral pion only
occurs in the very last phase of hadronisation, and hence observables that only include charged tracks
are always IR sensitive.

Minimum-bias (MB) and Underlying-Event (UE) physics can therefore be perceived of as offering
an ideal lab for studying nonfactorised and nonperturbative phenomena, with the added benefit of having
access to the highest possible statistics in the case of min-bias. In this context there is no strong prefer-
ence for IR safe over IR sensitive observables; they merely represent two different lenses through which
we can view the infrared physics, each revealing different aspects. By far the most important point is
that it is in their combination that we achieve a sort of stereo vision, in which infrared safe observables
measuring the overall energy flow are simply the slightly averaged progenitors of the spectra and cor-
relations that appear at the level of individual particles. A systematic programme of such studies can
give crucial tests of our ability to model and understand these ubiquitous components, and the resulting
improved physics models can then be fed back into the modeling of high-p⊥ physics.

1By “infrared” we here mean any non-UV limit, without regard to whether it is collinear or soft.

2

Unsafe: badly divergent in pQCD → large IR corrections:

Even if we have a hadronization model with which to compute 
these corrections, the dependence on it → larger uncertainty

appears to be able to account for. It therefore appears plausible that a universal modeling of the underly-
ing event must take into account that the hard-scattering and underlying-event components can involve
similar time scales and have a common, correlated evolution. It is in this spirit that the concept of “in-
terleaved evolution” [12] was developed as the cornerstone of the p⊥-ordered models [12, 13] in both
PYTHIA 6 [14] and, more recently, PYTHIA 8 [15], the latter of which now also incorporates a model of
parton rescattering [16].

The second tool, infrared safety1, provides us with a class of observables which are insensitive to
the details of the long-distance physics. This works up to corrections of order the long-distance scale
divided by the short-distance scale to some (observable-dependent) power, typically

IR Safe Corrections ∝
Q2

IR

Q2
UV

(1)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV). Of course,
in minimum-bias, we typically have Q2

UV ∼ Q2
IR, wherefore all observables depend significantly on

the IR physics (or in other words, when IR physics is all there is, then any observable, no matter how
carefully defined, depends on it).

Even when a high scale is present, as in resonance decays, jet fragmentation, or underlying-event-
type studies, infrared safety only guarantees us that infrared corrections are small, not that they are zero.
Thus, ultimately, we run into a precision barrier even for IR safe observables, which only a reliable
understanding of the long-distance physics itself can address.

Finally, there are the non-infrared-safe observables. Instead of the suppressed corrections above,
such observables contain logarithms

IR Sensitive Corrections ∝ αn
s log

m

(

Q2
UV

Q2
IR

)

, m ≤ 2n , (2)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental quantity
as particle multiplicities; in the absence of nontrivial infrared effects, the number of partons that would
be mapped to hadrons in a naı̈ve local-parton-hadron-duality [17] picture would tend logarithmically to
infinity as the IR cutoff is lowered. Similarly, the distinction between a charged and a neutral pion only
occurs in the very last phase of hadronisation, and hence observables that only include charged tracks
are always IR sensitive.

Minimum-bias (MB) and Underlying-Event (UE) physics can therefore be perceived of as offering
an ideal lab for studying nonfactorised and nonperturbative phenomena, with the added benefit of having
access to the highest possible statistics in the case of min-bias. In this context there is no strong prefer-
ence for IR safe over IR sensitive observables; they merely represent two different lenses through which
we can view the infrared physics, each revealing different aspects. By far the most important point is
that it is in their combination that we achieve a sort of stereo vision, in which infrared safe observables
measuring the overall energy flow are simply the slightly averaged progenitors of the spectra and cor-
relations that appear at the level of individual particles. A systematic programme of such studies can
give crucial tests of our ability to model and understand these ubiquitous components, and the resulting
improved physics models can then be fed back into the modeling of high-p⊥ physics.

1By “infrared” we here mean any non-UV limit, without regard to whether it is collinear or soft.

2

Safe → IR corrections power suppressed:
Can still be computed (MC) but 
can also be neglected (pure pQCD)

Let’s look at a specific example … 
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Jets

Cones
IRC safety & real-life

Real life does not have infinities, but pert. infinity leaves a real-life trace

α2
s + α3

s + α4
s ×∞ → α2

s + α3
s + α4

s × ln pt/Λ → α2
s + α3

s + α3
s

︸ ︷︷ ︸

BOTH WASTED

Among consequences of IR unsafety:

Last meaningful order
JetClu, ATLAS MidPoint CMS it. cone Known at

cone [IC-SM] [ICmp -SM] [IC-PR]

Inclusive jets LO NLO NLO NLO (→ NNLO)
W /Z + 1 jet LO NLO NLO NLO
3 jets none LO LO NLO [nlojet++]
W /Z + 2 jets none LO LO NLO [MCFM]
mjet in 2j + X none none none LO

NB: 50,000,000$/£/CHF/e investment in NLO

Multi-jet contexts much more sensitive: ubiquitous at LHC
And LHC will rely on QCD for background double-checks

extraction of cross sections, extraction of parameters

Consequences of Collinear Unsafety
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To explicitly check hadronization and other IR models

53

“Cone-like”: SiSCone, Anti-kT, … 
“Recombination-like”: kT, Cambridge/Aachen,Anti-kT… 
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Use IR Safe algorithms

To study short-distance physics

These days, ≈ as fast as IR unsafe algos and widely 
implemented (e.g., FASTJET), including

Then use IR Sensitive observables

E.g., number of tracks, identified particles, …

To explicitly check hadronization and other IR models

53

“Cone-like”: SiSCone, Anti-kT, … 
“Recombination-like”: kT, Cambridge/Aachen,Anti-kT… 

More about IR in lecture on soft QCD …

http://www.fastjet.fr/

http://www.fastjet.fr
http://www.fastjet.fr
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1. Fundamentals of QCD

2. Jets and Fixed-Order QCD

3. Monte Carlo Generators and Parton Showers

4. Matching at LO and NLO

5. QCD in the Infrared
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Note: slides posted at:
www.cern.ch/skands/slides

http://www.cern.ch/skands
http://www.cern.ch/skands
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Evolution in Q2 by DGLAP
(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

Require cross section independent of μF (at calculated order) → RGE

dfi(xi, µ2
F )

d lnµ2
F

=
�

j

� 1

xi

dxj

xj
fj(xj , µ

2
F )

αs

2π
Pj→ik

�
xi

xj

�

Altarelli-Parisi
Splitting Kernels

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat different interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market differ. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1− z. To specify the
kinematics, an azimuthal angle ϕ of the b around the a direction is needed in addition;
in the simple discussions ϕ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/Λ2) ⇒ dt = d ln(Q2) =
dQ2

Q2
, (162)

where Λ is the QCD Λ scale in αs. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the differential probability dP for parton a to branch is now

dPa =
�

b,c

αabc

2π
Pa→bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q → qg and
q→ qγ, and so on. The αabc factor is αem for QED branchings and αs for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa→bc(z) are

Pq→qg(z) = CF
1 + z2

1− z
,

Pg→gg(z) = NC
(1− z(1− z))2

z(1− z)
,

Pg→qq(z) = TR (z2 + (1− z)2) ,

Pq→qγ(z) = e2
q

1 + z2

1− z
,

P�→�γ(z) = e2
�

1 + z2

1− z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
� the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and δ(1− z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-off on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg→gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa→bc(z) is interpreted as the branching probability

287

Note: to be used directly in 
above equation, these splitting 
kernels should be defined with 

the “plus prescription”

1 + z2

1− z
→

�
1 + z2

1− z

�

+

For example:

Reason for this covered
in next two slides

j i

k

xi = z xj

xk = (1-z) xj
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QCD lecture 2 (p. 18)

Initial-state splitting

DGLAP
DGLAP equation (q ← q)

Change convention: (a) now fix outgoing longitudinal momentum x ; (b)
take derivative wrt factorization scale µ2

p

x

x
p

x

x/z x(1−z)/z

(1+!)µ2(1+!)µ2

µ 2µ 2

+

dq(x , µ2)

d lnµ2
=

αs

2π

∫ 1

x

dz pqq(z)
q(x/z , µ2)

z
−

αs

2π

∫ 1

0
dz pqq(z) q(x , µ2)

pqq is real q ← q splitting kernel: pqq(z) = CF
1 + z2

1 − z

Until now we approximated it in soft (z → 1) limit, pqq $ 2CF

1−z

More properly, it’s a gain-loss equation (same equation, rewritten):

QCD lecture 2 (p. 19)

Initial-state splitting

DGLAP
DGLAP rewritten

Awkward to write real and virtual parts separately. Use more compact
notation:

dq(x , µ2)

d lnµ2
=

αs

2π

∫ 1

x

dz Pqq(z)
q(x/z , µ2)

z
︸ ︷︷ ︸

Pqq⊗q

, Pqq = CF

(
1 + z2

1 − z

)

+

This involves the plus prescription:

∫ 1

0
dz [g(z)]+ f (z) =

∫ 1

0
dz g(z) f (z) −

∫ 1

0
dz g(z) f (1)

z = 1 divergences of g(z) cancelled if f (z) sufficiently smooth at z = 1

First term: some partons flow from higher y=x/z to x  (POSITIVE)
Second term: some partons at x flow to lower y=zx (NEGATIVE)

How can they be the same equation?
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QCD lecture 2 (p. 19)

Initial-state splitting

DGLAP
DGLAP rewritten

Awkward to write real and virtual parts separately. Use more compact
notation:

dq(x , µ2)

d lnµ2
=

αs

2π

∫ 1

x

dz Pqq(z)
q(x/z , µ2)

z
︸ ︷︷ ︸

Pqq⊗q

, Pqq = CF

(
1 + z2

1 − z

)

+

This involves the plus prescription:

∫ 1

0
dz [g(z)]+ f (z) =

∫ 1

0
dz g(z) f (z) −

∫ 1

0
dz g(z) f (1)

z = 1 divergences of g(z) cancelled if f (z) sufficiently smooth at z = 1


