Introductlon to QCD
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1. Fundamentals of QCD

2. Jets and Fixed-Order QCD

3. Monte Carlo Generators and Showers
4. Matching at LO and NLO

5. QCD in the Infrared

Note: slides posted at:
www.cern.ch/skands/slides

P. Skands



http://www.cern.ch/skands
http://www.cern.ch/skands

Factorlzatlon
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Partons within clouds of
further partons, constantly
emitted and absorbed

QCD
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Factorlzatlon
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For hadron to remain
intact, virtualities k? < Mp?
High-virtuality fluctuations

suppresed by powers of

asM}%
L2

Mh : mass of hadron

Partons within clouds of
further partons, constantly
emitted and absorbed

k2 : virtuality of fluctuation

QCD
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lllustration from T. Sjostrand
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Factorlzatlo

Hadrons are composite, with time-dependent structure:

For hadron to remain
intact, virtualities k? < My2
High-virtuality fluctuations

suppresed by powers of

Partons within clouds of
further partons, constantly
emitted and absorbed

Mh : mass of hadron

k2 : virtuality of fluctuation

— Lifetime of fluctuations ~ /M

Hard incoming probe interacts over much shorter time scale ~ 1/Q

On that timescale, partons ~ frozen

Hard scattering knows nothing of the target hadron apart from the fact
that it contained the struck parton

QCD

Lecture

lllustration from T. Sjostrand
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Factorlzatlon Theorem
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In DIS, there is a formal proof of factorization

Deep Inelastic
Scattering

(DIS)

(By “deep”, we
mean Q?>>M}?)

P. Skands

(Collins, Soper, 1987)
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Factorlzatlon Theorem
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In DIS, there is a formal proof of factorization
(Collins, Soper, 1987)

Scattered

. Lept
Deep Inelastic  Lepron oy beprer

Scattering N2
(DIS) ¢

Scattered
Quark

O >
:l’; .
(By “deep”, we y

mean Q?>>M}?) —{fi/n ==

— We really can write the cross section in factorized form :

“\ d&“‘”" ZE@,(I) , 2
=Y [an [avy fntes @) T 20O
i f

dﬂj‘i d(I)f
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Factorlzatlon Theorem
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In DIS, there is a formal proof of factorization
(Collins, Soper, 1987)

Scattered
. Lept
Deep Inelastic  Lepton oy beprer
Scattering _Q?
(D | S) A > Scattered
T o Quark
€¢ 99 2
(By “deep”, we

mean Q?>>M}?) —{fi/n ==

— We really can write the cross section in factorized form :

~ Aot =7 (z;, @, Q%)
— d i d(I) ; i 2 il i i)

Sum over
Initial (i)
and final (f)
parton flavors Lecture
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Factorlzatlon Theorem

SIS

In DIS, there is a formal proof of factorization
(Collins, Soper, 1987)

Scattered
. Lept
Deep Inelastic  Lepron oy beprer
Scattering _Q?
(D | S) A > Scattered
T o Quark
€¢ 99 2
(By “deep”, we

mean Q?>>M}?) —{fi/n ==

— We really can write the cross section in factorized form :

~li— f
ot = >\>\/dm’i /dq)f fisn(zi, QF) 0 (@i, &y, Q)

— L dx; i dP f
v f
Sum over o f
Initial (i) = Final-state Qcp
and final (f) phase space
parton flavors i




Factorlzatlon Theorem

SIS
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In DIS, there is a formal proof of factorization
(Collins, Soper, 1987)

Scattered
. Lept
Deep Inelastic  Lepron oy beprer
Scattering _Q?
(D | S) A > Scattered
T o Quark
€¢ 99 2
(By “deep”, we

mean Q?>>M}?) —{fi/n ==

— We really can write the cross section in factorized form :

“\ d&“‘”" 331',(1) , 2
=Y [an [avy fntes @) T 20O
i f

dx i dP f
Sum over O f i/h
Initial (i) = Final-state = PDFs QCD
and final (f) phase space  Assumption:
parton flavors Q2 = Qg2 Lecaure
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Factorlzatlon Theorem

SIS
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In DIS, there is a formal proof of factorization
(Collins, Soper, 1987)

Scattered
. Lept
Deep Inelastic  Lepron oy beprer
Scattering _Q?
(D I S) A > Scattered
T o Quark
7

(By “deep”, we
mean Q?>>M}?) —{fi/n ==

— We really can write the cross section in factorized form :

“\ d&“‘”" 331',(1) , 2
=Y [an [avy fntes @) T 20O
i f

dx i dd f
Sum over (I)f fi/h Differential partornic
Initial (i) = Final-state = PDFs Hard-scattering oo
and final (f) phase space  Assumption: Matrix Element(s)
parton flavors Q2 = Q¢ seqe
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Factorlzatlon Theorem

SIS
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In DIS, there is a formal proof of factorization
(Collins, Soper, 1987)

Scattered
. Lepton
Deep Inelastic  Lepton e
Scattering _Q?
(DlS) Note: Beyond LO,
A Scattered
o > Quark f can be more
X; Har than one parton

(By “deep”, we
mean Q?>>M}?) —{fi/n ==

— We really can write the cross section in factorized form :

“\ d&“‘”" 331',(1) , 2
=Y [an [avy fntes @) T 20O
i f

dx i dd f
Sum over (I)f fi/h Differential partornic
Initial (i) = Final-state = PDFs Hard-scattering oo
and final (f) phase space  Assumption: Matrix Element(s)
parton flavors Q2 = Q¢ seqe
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Factorlzatlon Theorem
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In DIS, there is a formal proof of factorization
(Collins, Soper, 1987)

Scattered
Deep Inelastic Lepton / Lepton
Scattering B Q2
I 1 . ~ Scattered Note: Beyond LO,
Surprise Question: (6 ) e o Beyond -

than one parton

Whats the color
factor for DIS?

— We really can write the cross section in factorized form :

“\ d&“‘”" ZE@,(I) , 2
=Y [an [avy fntes @) T 20O
i f

dx i dd f
Sum over (I)f fi/h Differential partornic
Initial (i) = Final-state = PDFs Hard-scattering oo
and final (f) phase space  Assumption: Matrix Element(s)
parton flavors Q2 = Qg2 [ Lecure
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It S Just another crossmg
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ete” = /Z = qq 9 ="/ Z — 170 tq "% 1
(Hadronic Z Decay) (Drell & Yan, 1970) (DIS)
—>
In Out In Out In é Out
—
Time /
>
Color Factor: Color Factor: Color Factor:
Te[5; ] = N L o5 ] = — L s, =1
1] Ng 1] NC NC 1)
(see Lecture I) (see Lecture I) ocD
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(Factorlzatmn Caveats)

R SIS

e B a5,

. The proof only includes the first term in an operator
product expansion in “twist” = mass dimension - spin

— Strictly speaking, only valid for Q2— . Neglects corrections of order

[ln (Q2gg2)] e (n=2 for DIS)

2. The proof only applies to inclusive cross sections

Higher Twist :

In e*e", in DIS, and in Drell-Yan. For everything else: factorization ansatz

3. Scheme dependence

In practice limited to MSbar + variations of Qr

4. Interpretation of PDFs as parton number densities

Is only valid at Leading Order Qe

P. Skands







_ Parton DenS|t|es '
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p j - xpproton

2| Parton distribution
fa(ﬁlﬁ'm Ql ) functions (PDF)
= sum over long-wavelength histories
leading to @ with x, at the scale Q2 ws»)

QCD
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Parton DenS|t|es

. B  J¢ % NN - B %

LHC Coverage

, . x and Q?2
p J = A proton 10°
L - (M/14 TeV
f ( 7 QQ) Parton distribution o giM( S et Mo 10Ter
A\*a7 *v 1 /| functions (PDF)
. 10 yar
= sum over long-wavelength histories /
leading to @ with x, at the scale Q2 ws») 10°
~ 10
>
o
e .
=~ 10 M =100 GeV frmiimimrimiimiinrimissonsimssnsmvo s
..O /‘/‘/
10° S
y= s "6 4
10° <
M=10GeV
10'
10° Qcp
100 10° 10’

Lecture

X )
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Parton DenS|t|es
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LHC Coverage

: : x and Q?

p Jj =X proton 10°

f ( 7 QQ) Parton distribution Lot P i Moty
A\A) "¢ 1 /] functions (PDF)

= sum over long-wavelength histories o

leading to « with x, at the scale Q7 «s») of R , .............

Shape of f(x) unknown
(non-perturbative)

Different groups (CTEQ, MSTW, NNPDF,
etc) use different ansatze

Q° (GeVH

10°

— fit to measurements

Evolve to fixed small reference scale

% b}
Q = Mproton 0 8 i n? ®  wd 0 ocP

Lecture

X Il

P. Skands




Evolution in Q? by DGLAP

—— 7 -— oo gm, (Dokshitzer-Gribov-Lipatov-Altagelli-Parisi) = memesse-s 5 sonsammm—

Require cross section independent of ur (at calculated order) = RGE

dfi(a?z',ﬂ%)
dlIn p,

U2 = Q2 = (2 GeV)? Uiz = Q2 = (100 GeV)?
— 2 — n
8 n HEPDATA o 8 [
- B Databases q
:>-_</1.8 [ Qxx2= 4 GeVxx? x : Q#x2= 10000 GeV#x2
X A __up MSTW2008LO x 71 B __up MSTW2008LO
1.6 - ---- Upbar MSTW2008LO i —__ upbar MSTWZ2008LO
L charm MSTW2008LO 6 L B . Charm  MSTW2008LO
1.4 -... gluon MSTW2008LO x O.1 i v ——. gluon  MSTW2008BLO x 0.1
12 | S

QCD

Lecture
]
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LO VS NLO

N e
da.éz’—n”(xi (I)f QQ)
= de; | d®s £ (x:, Q3 i et F
XY [z [y fnton @) g
Q2= (10 GeV)?
TN
g;im 3 Q#+2= 100  GeVs*2
x Lo __ gluon MSTW2008LO
— . gluon MSTW2008NLO
_g gNLO i~ up MSTW2008LO
210 F - oo up MSTW2008NLO
5 |
2 [
e NLO matrix elements
1 R . contain low-x
E UNLO - enhancements (they are
: larger than LOXDGLAP)
: — need less low-x PDFs
-1
10
i (+ momentum conservation
i — more partons at high x
- , — larger cross sections) o
10 4 3 Lecture
10 10 I
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LO VS NLO
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Aot = (x;, ®r, Q%)
lh __ . ' . 2 1y £ fry\Y R
Q2= (10 GeV)?
g | 4 )
< 10F Q++2= 100 Geves2 The “best fit” depends
X

—_ gluon  WMSTW2008LO on the matrix elements

__ gluon MSTW2008NLO .
you use when doing the fit
. up MSTW20081L0

. up MSTW2008NLO \_ Y

(logarithmic)
S
!

NLO matrix elements
contain low-x

enhancements (they are
larger than LOXDGLAP)

— need less low-x PDFs

o 4 Relevant to use the right
' PDFs with the right | .
. (+ momentum conservation
Matrix Elements — more partons at high x
2 : — larger cross sections) =
10 4 — .“"I_3 SE— i) —_tu -1 E— Lecture
10 10 10 10 "
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(Advanced) PDF Uncertalntles
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20
Attempt to propagate [

experimental errors through
PDF fits = 68% CL

But “tensions’ between
different data sets

percentage.error

— 90%, or something else?

+ Different groups (CTEQ,  -10 |
MSTW, NNPDF, etc) use :
different ansatze for shape of ,
f(x) at low-Q boundary o0 L

4
/
-15 £
/
= /
/
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(Advanced) PDF Uncertalntles

~ws D |- . ¢ 5,

Attempt to propagate

experimental errors through
PDF fits = 68% CL

But “tensions’ between
different data sets

— 90%, or something else?

+ Different groups (CTEQ,
MSTW, NNPDE etc) use
different ansatze for shape of
f(x) at low-Q boundary

percentage.error

20

4
/
-15 £
/
= /
/

—20 L

3T R

Gluon PDF uncertainty,

Q2 = (10 GeV)?

Still, good to = 10% even for LO gluon in 10 < x < |0-! (bigger errors at lower Q?)

P. Skands




Factorlzatlon Summary
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Factorization: expresses the independence of long-wavelength (soft)
emission on the nature of the hard (short-distance) process.

QCD

P. Skands
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Factorization: expresses the independence of long-wavelength (soft)

emission on the nature of the hard (short-distance) process.

-——ZEZ ﬁ%

2) foly, QF)

da—ab—)f(ivajxlh f?Q Qf)

dX;

D(X; — X, Q. Q7)

P. Skands
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f(x,Q;) ./\g
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SO/ |-

lllustration by M. Mangano




Factorlzatlon Summary
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Factorization: expresses the independence of long-wavelength (soft)
emission on the nature of the hard (short-distance) process.

dAa—> as )
——ZZ Dl @lan QD Tt dﬁé’_m D) D%, - XL Q)
f

/ llustration by M. Mangano
=
v =@ | I-@)-m

[ '\

J proton
2\ | Parton distribution 9 2 2\ | Fragmentation
fa(xay Q@) functions (PDF) D(Xf — X’ QZ ? Qf) Function (FF)
= sum over long-wavelength histories " Sum over long-wavelength histories
leading to @ with x, at the scale Q2 s») fromX; at Q2 to X  (FSRand Hadronization) aco

+ (At H.O. each of these defined in a specific scheme, usually MS) i

P. Skands




Factorlzatlon Summary
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Factorization: expresses the independence of long-wavelength (soft)
emission on the nature of the hard (short-distance) process.

da—ab—{f(xaa Lp, f7 Q Qf)
dX;

/ llustration by M. Mangano
=
v =@ | I-@)-m

[ ‘§<

D(X; — X, Q. Q7)

=3 [ [t @it @
ab f %€

J proton
2\ | Parton distribution 9 2 2\ | Fragmentation
fa(xay Q@) functions (PDF) D(Xf — X’ QZ ? Qf) Function (FF)
= sum over long-wavelength histories " Sum over long-wavelength histories
leading to @ with x, at the scale Q2 s») fromX; at Q2 to X  (FSRand Hadronization) aco

+ (At H.O. each of these defined in a specific scheme, usually MS) i
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Factorlzatlon Summary
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Factorization: expresses the independence of long-wavelength (soft)
emission on the nature of the hard (short-distance) process.

da'ab—{f(xaa L, f7 Qg? Q?)
Z dX;

/ llustration by M. Mangano
=
v =@ | I-@)-m

[ '\

(Xf — X, QZ27Q?C>

J proton
2\ | Parton distribution 9 2 2\ | Fragmentation
fa(xay Q@) functions (PDF) D(Xf — X’ QZ ? Qf) Function (FF)
= sum over long-wavelength histories " Sum over long-wavelength histories
leading to @ with x, at the scale Q2 s») fromX; at Q2 to X  (FSRand Hadronization) aco

+ (At H.O. each of these defined in a specific scheme, usually MS) i
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Factorlzatlon Summary
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Factorization: expresses the independence of long-wavelength (soft)
emission on the nature of the hard (short-distance) process.

da'ab—{f(xaa L, f7 Qg? Q?)
Z dX;

/ llustration by M. Mangano
=
v =@ | I-@)-m

[ '\

J proton
2\ | Parton distribution 9 2 2\ | Fragmentation
fa(xay Q@) functions (PDF) D(Xf — X’ QZ ? Qf) Function (FF)
= sum over long-wavelength histories " Sum over long-wavelength histories
leading to @ with x, at the scale Q2 s») fromX; at Q2 to X  (FSRand Hadronization) aco

+ (At H.O. each of these defined in a specific scheme, usually MS) i
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QCD at leed Order

e B T N N -

Distribution of observable: O

In production of X + anything

Fixed Order do

(All Orders) @ -

/

Cross Section
differentially in O

P. Skands

Z/dq)XM Z )(f)wc

k=0

“anything” = legs

Phase Space \
f Matrix Elements
Sum over

for X+k at (l) loops

PR s

Sum over identical
amplitudes, then square

/ Momentum

e configuration

0 (O - O({p}X—l—k))

2

Evaluate observable
— differential in O

QCD

" Lecture
Il

12




QCD at Fixed Order

—~—s v - U SR Y P T - T L., TTIITESRRRRRL. - b T

Distribution of observable: O

Sum over identical

M L] |- d , h
In PrOduct|on Of X -+ anythlng amplitudes, then square
/ Momentum
2 e configuration
Fixed Order do

(All Orders) a0 - Z/dq)X+k ZM)(Q% 5(0_ O({p}X—i—k))

k=0 £=0
Phase Space
f Matrix Elements Evaluate observable
Sum over

Cross Section for X+k at (1) loops — differential in O
differentially in O “anything” = legs

Truncateat £k =0,/ =0,
— Born Level = First Term

Lowest order at which X happens

P. Skands



QCD at Fixed Order
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P. Skands

Distribution of observable: O

Sum over identical

M L] |- d , h
In PrOduct|on Of X -+ anythlng amplitudes, then square
/ Momentum
2 e configuration
Fixed Order do

(All Orders) a0 - Z/dq)X+k ZM)(Q% 5(0_ O({p}X—i—k))

k=0 £=0
Phase Space
f Matrix Elements Evaluate observable
Sum over

Cross Section for X+k at (1) loops — differential in O
differentially in O “anything” = legs

Truncateat k =n,/ =0,
— Leading Order for X + n

Lowest order at which X + n happens




QCD at Fixed Order

—~—s v - U SR Y P T - T L., TTIITESRRRRRL. - b T

Distribution of observable: O

Sum over identical

M L] |- d , h
In PrOduct|on Of X -+ anythlng amplitudes, then square
/ Momentum
2 e configuration
Fixed Order do

(All Orders) a0 - Z/dq)X+k ZM)(Q% 5(0_ O({p}X—i—k))

k=0 £=0
Phase Space
f Matrix Elements Evaluate observable
Sum over

Cross Section for X+k at (1) loops — differential in O
differentially in O “anything” = legs

Truncateat kK + /¢ =n,
— N"LO for X

Includes N™1LO for X+, N™"2LO for X+2, ...

P. Skands



Loops and Legs
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Another representation

X2  X+]®

Loops

X)X+ () X420 X+3()

Born X+ X+20) X+3(0)

Legs

P. Skands




Loops and Legs %
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Another representation

X2 X+]©

J
/{Lﬂ/’f %07‘\
(1882-1970)
Nobel Prize 1954

Loops

X)X+ () X420 X+3()

X+ 10) X+20) X+3(0)

Legs

P. Skands




Loops and Legs

T AN

Another representation

X @ NLO

(includes X+ @ LO)

X2 X+]©

Loops

X+ X+20) X+3(1)

Note: X+ jet

X+2(0) X+3(O) o observables

only correct at
LO

QCD

L eg S Lecltlure

P. Skands




Loops and Legs

b R N N N

Another representation

X @ NNLO

(includes X+1 @ NLO)
(includes X+2 @ LO)

Note: X+ jet
observables

only correct at
NLO

Loops

Note: X+2 jet
observables

only correct at
LO

Legs Lecture

P. Skands




Cross sectlons at LO
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Born: /A o o
(0))2 X0 X+
UBorn:/|MX |
N/ .
5 X+10  X+20)
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Cross sectlonsat LO
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Born: ) ) X@) X+10)
(0)2 X0 X+
UBorn:/|MX |
4 1 . X+]0  X+20)
Born + n
XO  X+]@
9 X0 | X+
0X+1 / ‘MXJrl‘

Born .X+2(°)

Infrared divergent — Must be regulated

R = some Infrared Safe phase space region
(Often a cut on p; > n GeV)

Careful not to take it too low!

P. Skands
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Cross sectlons at LO

TR AN s ST P P

Born: ) ) X@  X+|@
(0)12 X0 X
UBorn:/|MX |
! ! . X+10  X+20)
Born + n
X X+
9 X0 X+
Ux+1 / ‘MXJrl‘

Born .X+2(°)

Infrared divergent — Must be regulated

R = some Infrared Safe phase space region

(Often a cut on p; > n GeV)

Careful not to take it too low!




Recall Conformal QCD

N L B V. e PR

Naively, brems suppressed by &;=<0.|
Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet ... — More on this in lectures

Example: 100 GeV can be “soft” at the LHC

SUSY pair production at 14 TeV, with Msusy = 600 GeV

LHC - spsla - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217
FIXED ORDER pQCD |00 [pb]| ¢§ urg upuy upurp 17T

PT,; >‘100 GeV’ oo; | 4.83 5.65 0.286 0.502 1.30 e ——
inclusive X + 1 “jet” >0 1 2.89 2.74 0.136 0.145 0.73

inclusive X + 2 “jets” ’O'Qj 1.09 0.85 0.049 0.039 0.26

on Monte Carlo & Matching

naive estimate

pPT.i > 50 GeV J0j 4.83 5.65 0.286 0.502 130 O for 50 GeV jets = larger than
01 590 5.37 0.283 0.285 1.50 total cross section = not under
02 4.17 3.18 0.179 0.117 1.21 control o

(Computed with SUSY-MadGraph) Lecture

P. Skands




Cross sectlons at NLO
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NLO:
0)x*
A0 / P [ [ [ 2mela O

(note: this is not the |-loop diagram squared)

X2 X+

P. Skands




Cross sectlons at NLO
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NLO: : :
A0 / e [ s [ 2relat P

(note: this is not the |-loop diagram squared)

qr X@) X+1®@

qk

KLN Theorem (Kinoshita-Lee-Nauenberg)

Singular’ities cancel at complete order (only finite terms left over)

= Oporm-+Finite { / ]Mé?)H!Z}qLFinite{ / QRe[M§§>M§§>*]}
onto(eTe™ = qf) = oro(eTe” — qq) (1 ‘|“|‘ O(a§)> aco

P. Skands




The Subtractlon Idea

~ws D |- SO QR e Y

How do | get finite{Real} and finite{Virtual} ?

First step: classify IR singularities using universal functions

EXAMPLE: factorization of amplitudes in the soft limit

4 — )

! %j
Soft Limit o M /. k
(Ej — 0): . ‘<1

P. Skands




The Subtractlon Idea

~ws D |- SO SR e Y PR P

How do | get finite{Real} and finite{Virtual} ?

First step: classify IR singularities using universal functions

EXAMPLE: factorization of amplitudes in the soft limit

4 = | = )
] ___%lj
Soft Limit o M /. k
(Ej — 0): . ;
m+1 ---<K

& — —

.o g—0 .
’Mn-l—l(la"' 77/7.]7ka”° 7n_|_ 1)‘2 L> ggc’b]k S’L]k |Mn(17 727]{7"' 7n_|_ 1)|2

: 251 2m 2m
) Unlvgrsal ) n(mr,my) = —% T 2 Sii = 2pi - -
Soft Eikonal SijSik  Sij S5k

P. Skands




The Subtractlon Idea

——— D .- L B V. PR

Add and subtract IR limits (SOFT and COLLINEAR)

_ R S S Dipoles (Catani-
donro = / (dUNLO - dO-NLO + / T / Seymour)
d(I)m—l—l dq)m—l—l ddm,

Global Antennae

Finite by Universality Finite by KLN (Gehrmann,
Gehrmann-de Ridder,

Glover)

Sector Antennae
(Kosower)

P. Skands



The Subtractlon Idea

——m— D .- TN R e

Add and subtract IR limits (SOFT and COLLINEAR)

_ R S S Dipoles (Catani-
donro = / (dUNLO - dO-NLO + / T / Seymour)
d®,,+1 d®,,+1 d®,,

Global Antennae

Finite by Universality Finite by KLN (Gehrmann,
Gehrmann-de Ridder,
° [ GIover)
[ ]
Choice of subtraction terms: oo A

(Kosower)

Singularities mandated by gauge theory

Non-singular terms: Up to YOU (added and subtracted, so vanish)

P. Skands
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The Subtractlon Idea

—— D - B a5,

Add and subtract IR limits (SOFT and COLLINEAR)

_ R S S Dipoles (Catani-
donro = / (dUNLO - dO-NLO + / T / Seymour)
d®,,+1 d®,,+1 d®,,

Global Antennae

Finite by Universality Finite by KLN (Gehrmann,
Gehrmann-de Ridder,

Glover)

Choice of subtraction terms: Cector Antenmac

(Kosower)

Singularities mandated by gauge theory

Non-singular terms: Up to YOU (added and subtracted, so vanish)
SOFT COLLINEAR
M(Z° = q;0:G: )| 28, 1 S; S
o)
IM(Z° = q1qKk )| SijSjk  SIK \Sjk  Sij

M(H® = q:9;q1)|? 25; 1 (s S,
M _ qg{Qk)L :ggch[ i +—< L4 3"“+2>]
IM(H® = q1qk)| J Sjk  Sij

SOFT COLLINEAR  +F

P. Skands



Structu re of G(NNLO)

P P

N N Lo |-Loop X |-Loop |-Loop % Real (X+1)
dk | dk qj : qj

N

AR = N0 [ (IR -+ 2RO 20+ [ oRelar L M0+ [ 1320

s R

qk

q

Two-Loop x Born Interference Real x Real (X+2)

QCD

Lecture
Il
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Recall: Scale Dependnce

B __SERPY

——— D .- L B V.

Regularization of IR and UV divergences
E.g., using dimensional reg — unphysical scales ur and ur
These are artificial scales we introduce, to handle the calculation
At infinite order (+ non-pert), all dependence on them must vanish

But in a fixed-order truncation, a residual dependence remains

P. Skands



Recall: Scale Dependence

SIS

——m— D .- B B v T N

Regularization of IR and UV divergences
E.g., using dimensional reg — unphysical scales ur and ur
These are artificial scales we introduce, to handle the calculation
At infinite order (+ non-pert), all dependence on them must vanish

But in a fixed-order truncation, a residual dependence remains

Why scale variation ~ uncertainty?

Any scale dependence of calculated orders must be canceled by the
contribution from the uncalculated orders (+ non-pert)

(@s(Q7) — as(Q7)) IM]* = aZ(Q7) | MJ* +

Next order must include at least a term that exactly cancels this one
(in addition to whatever other terms the next order also contains) oco

P. Skands
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Jets as Projections

NN g

LO partons NLO partons Parton Shower Hadron Level

Jet l Defn Jet l Def" Jet l Defn Jet l Defn

jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

WA VA4

Projections to jets provides a universal view of event

Illustrations by G. Salam

27



There is no unique or “best” jet definition

S e TR O e Y . N T e __ &8 P P

YOU decide how to look at event

The construction of jets is inherently ambiguous
| .Which particles get grouped together?
JET ALGORITHM (+ parameters)

2. How will you combine their momenta?

RECOMBINATION SCHEME (e.g.,'E’ scheme: add 4-momenta)

Jet Definition

P. Skands




There is no unique or “best” jet definition

——— D .- e B T N N - e TR, TS PR

YOU decide how to look at event

The construction of jets is inherently ambiguous
| .Which particles get grouped together?
JET ALGORITHM (+ parameters)

2. How will you combine their momenta?

RECOMBINATION SCHEME (e.g.,'E’ scheme: add 4-momenta)

Jet Definition

Ambiguity complicates life, but gives flexibility
in ones view of events — Jets non-trivial! Qco

P. Skands




Types of AIgOrlthms

S e SN R e Y PR P

I o sequential Recombination (you’ll hear more in lectures on Jet Substructure)

P. Skands




Types of Algorlthms

~ws D |- B S g 5.

I o Sequential Recombination (you’ll hear more in lectures on Jet Substructure)

Take your 4-vectors. Combine the ones that have the lowest
‘distance measure’

Different names for different distance measures

k7, = EZ(1 — cos ;)

(/

Durham k7 : AR?j x min(k3;, k%j)

Cambridge/Aachen : ARZ.

AR?j = (m; —m;)° + Aﬁb?j

Anti-kT : ARQ / maX(sz, kT]) + Prescription for how to
combine 2 momenta into |
ArClus 62 pJ_ — % Sjk/Sijk (or 3 momenta into 2)

— New set of (n-1) 4-vectors

QCD

Lecture
]

29
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Types of Algorlthms

~ws D |- B S g 5.

I o Sequential Recombination (you’ll hear more in lectures on Jet Substructure)

~— Take your 4-vectors. Combine the ones that have the lowest
‘distance measure’

Different names for different distance measures

k7, = EZ(1 — cos ;)

(/

Durham kr : AR?j X min(k%z-, k%j)
Cambridge/Aachen : ARZ.

Anti-kT : ARQ / maX(sz, kT]) + Prescription for how to
combine 2 momenta into |

AR?j = (m; —m;)° + Aﬁb?j

ArClus 3-2): = SijSjk/Sijk
(3-2) pJ— L1 / tJ (or 3 momenta into 2)

-—— — New set of (n-1) 4-vectors

Look at event at:

Iterate until A or B (you choose which):
A: all distance measures larger than something

B: you reach a specified number of jets specific Niec

jets

specific resolution
QCD

Lecture
]

29
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P. Skands

Why KT (Or pT or AR AR)7

e B T N N

Attempt to (approximately) capture universal jet-
within-jet-witin-jet... behavior

Approximate full matrix element . .
Eikonal

(universal, always there)

(0)
’MX—Fl(‘(Sg)l? S1k; S)‘Q = 47‘-&80}7 (
My (s)]7

by Leading-Log limit of QCD — universal dominant terms

dSﬂdSlk . dpi dz X dE1 d@zl
SiS1E  » p: z(1—2) / min(FE;, Ey) 0;

(B, < Ei, 05 < 1)

Rewritings in soft/collinear limits

“smallest” kr (or pt or i, or ...) = largest Eikonal " Lecture




Types of AIgOrlthms

SN R e Y PR P

2. “Cone” type

Take your 4-vectors. Select a procedure for which “test cones”
to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations
thereof, e.g., CDF midpoint algorithm) =“seeds”

Unseeded : smoothly scan over entire event, trying everything
Sum momenta inside test cone — new test cone direction

Iterate until stable (test cone direction = momentum sum direction)

QCD

| Lecture
]

P. Skands 31




Types of Algorlthms

T AN ———— PR P

2. “Cone” type

Take your 4-vectors. Select a procedure for which “test cones”
to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations
thereof, e.g., CDF midpoint algorithm) =“seeds”

Unseeded : smoothly scan over entire event, trying everything
Sum momenta inside test cone — new test cone direction

Iterate until stable (test cone direction = momentum sum direction)

P. Skands 31

QCD
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Infra red Safety

L B V. \

Definition

An observable is infrared safe if it is insensitive to

SOFT radiation:

Adding any number of infinitely soft particles (zero-energy)
should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two comoving particles
(conserving the total momentum and energy) should not change
the value of the observable

P. Skands




Safe VS Unsafe Jets

e B T N N T -——————n PR

May look pretty similar in experimental environment ...

But it’s not nice to your theory friends ...

Unsafe: badly divergent in pQCD — large IR corrections:

IR Sensitive Corrections o< ay log™ ( gv> , m<2n
Qir

Even if we have a hadronization model with which to compute

these corrections, the dependence on it = larger uncertainty

Safe — IR corrections power suppressed:

Q%R Can still be computed (MC) but

2
Q% can also be neglected (pure pQCD)

IR Safe Corrections o<

P. Skands



Safe VS Unsafe Jets

L B V. L TTTe——— PR

May look pretty similar in experimental environment ...

But it’s not nice to your theory friends ...

Unsafe: badly divergent in pQCD — large IR corrections:

IR Sensitive Corrections o< ay log™ ( gv) , m<2n
Qir

Even if we have a hadronization model with which to compute

these corrections, the dependence on it = larger uncertainty

Safe — IR corrections power suppressed:

Q%R Can still be computed (MC) but

2
Q% can also be neglected (pure pQCD)

IR Safe Corrections o<

Let’s look at a specific example ... &&

P. Skands
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cone iteration
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Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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cone iteration

.

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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(GeV/c)
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cone iteration

.

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone

jet 1
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(GeV/c)
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B L L

cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone

rapidity

jet 2
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|CPR iteration issue

Iterative Cone Progressive Removal

cone iteration — — cone axis
> cone

(GeV/c)

L
o
o
T T T T T

jet 1 rapidity
l |

jet 2

Collinear splitting can modify the hard jets: ICPR algorithms are
collinear unsafe —- perturbative calculations give oo

Slides from G. Salam
51




Consequences of Colllnear Unsafety

PR

Collinear Safe Collinear Unsafe
jet 1 | | jet 1 | | jet 1 | | jet1-l
jet 2
O X (=) og X (+) 0g X (=) of X (+)
Infinities cancel Infinities do not cancel

Invalidates perturbation theory

P. Skands




Consequences of Colllnear Unsafety

PR

P. Skands

Collinear Safe Collinear Unsafe
| jet 1 | | jet 1 | | jet 1 | | jet1-I !
jet 2
O X (=) og X (+) 0g X (=) of X (+)
Infinities cancel Infinities do not cancel

Invalidates perturbation theory

Real life does not have infinities, but pert. infinity leaves a real-life trace

2, 3, 4 2, 3, 4 2 3, 3
a +ag +a; X 0o — ai + o +a; xInp:/N— ol + o + o

BOTH WASTED oeP




Stereo V|S|on

~ws D |- R, g 5.

Use IR Safe algorithms http://www fastiet fr/
To study short-distance physics

These days, = as fast as IR unsafe algos and widely
implemented (e.g., FASTJET), including

“Cone-like”: SiSCone, Anti-kT, ...

“Recombination-like”: kt, Cambridge/Aachen,Anti-kr...

Then use IR Sensitive observables
E.g., number of tracks, identified particles, ...

To explicitly check hadronization and other IR models

P. Skands
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Stereo V|S|on

~ws D |- R, g 5.

Use IR Safe algorithms http://www fastiet fr/

To study short-distance physics

These days, = as fast as IR unsafe algos and widely
implemented (e.g., FASTJET), including

“Cone-like”: SiSCone, Anti-kT, ...

“Recombination-like”: kt, Cambridge/Aachen,Anti-kr...

Then use IR Sensitive observables
E.g., number of tracks, identified particles, ...

To explicitly check hadronization and other IR models

More about IR in lecture on soft QCD ... Lecture

P. Skands
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Introductlon to QCD

SN R e Y L. Y TR PR P

. Funhdamentals of QCD

2. Jets and Fixed-Order QCD

3. Monte Carlo Generators and Parton Showers
4. Matching at LO and NLO

5. QCD in the Infrared

Note: slides posted at:
www.cern.ch/skands/slides

QCD

P. Skands
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Evolution in Q? by DGLAP

W —-— s g, (Dokshitzer-Gribov-Lipatov-Altagelli-Parisi) = mmmm— - 5 —

Require cross section independent of ur (at calculated order) = RGE

dfz .CEz'a,UJZ ! dx Qs L
( 2F) = Z/ —fyfj(xjaM%)%Pj—mk (;)

dln pz

j i L j J
Altarelli-Parisi J r\\&l — X =2ZX]
Splitting Kernels I Xk = (1-z) xj
1+ 22
Pqﬁqg(z) = CF , Note: to be used directly in
l -2z above equation, these splitting
(1 _ Z(l — Z))2 kernels should be defined with
Pgﬁgg(z) — NC 2(1 Z) : the “plus prescription”
__ 2 2 For example:
Pylz) = Ta(2+(1—2)7), For eampe:
1 4 22 1+22 (1+=2
Pyqr(2) = € ) 1—z " \1-z
1 — z +
5, 1+ 27
Pg_%fy(z) = 6£ ; Reason for this covered oco
l—=z in next two slides

Lecture
]
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PDF DGLAP Detalls

TR O e Y P P

We Wrote: do(x.;?) o /1 dz P (2) A/21)

dlIn 2 27 z

A - 4
"~

Paq®q

More properly, it’s a gain-loss equation (same equation, rewritten):

X, (12 as (1 x/z, as [
S B _S/ dz pgq(Z2) /2 ) __S/O dZPQq(Z)q(Xﬂuz)

dIn p? 27 J, z 27

1—|—Z
1—z

Pqq is real g < g splitting kernel: p,,(z) =

First term: some partons flow from higher y=x/z to x (POSITIVE)
Second term: some partons at x flow to lower y=zx (NEGATIVE)




PDF DGLAP Detalls

N L B V. PR

Awkward to write real and virtual parts separately. Use more compact
notation:

dg(x,1?) s [* q(x/z, 11°) 14 2°
dn 122 :jfx dz Pgq(2) ; Paq = CF .

N

Pqq®q

This involves the plus prescription:

[ dzle@) fa) = [ dzgla) o)~ [ dzela) )

z = 1 divergences of g(z) cancelled if f(z) sufficiently smooth at z =1

P. Skands




