Introduction to QCD

- I. Fundamentals of QCD
- 2. Jets and Fixed-Order QCD
- 3. Monte Carlo Generators and Showers
- 4. Matching at LO and NLO
- 5. QCD in the Infrared

Note: slides posted at: www.cern.ch/skands/slides

QCD

Factorization

Hadrons are composite, with time-dependent structure:

Factorization

Hadrons are composite, with time-dependent structure:

Partons within clouds of further partons, constantly emitted and absorbed

For hadron to remain intact, virtualities $k^2 < M_h^2$ High-virtuality fluctuations suppresed by powers of

$$\frac{\alpha_s M_h^2}{k^2}$$

IJ

d

g

U

 M_h : mass of hadron k^2 : virtuality of fluctuation

QCD

Factorization

Hadrons are composite, with time-dependent structure:

For hadron to remain intact, virtualities $k^2 < M_h^2$ High-virtuality fluctuations suppresed by powers of

$$\frac{\alpha_s M_h^2}{k^2}$$

 M_h : mass of hadron k^2 : virtuality of fluctuation

\rightarrow Lifetime of fluctuations $\sim 1/M_h$

Hard incoming probe interacts over much shorter time scale $\sim I/Q$

On that timescale, partons ~ frozen

Hard scattering knows nothing of the target hadron apart from the fact that it contained the struck parton

QCD

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)

In DIS, there is a formal proof of factorization

 \rightarrow We really can write the cross section in factorized form :

$$\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_i \int d\Phi_f f_{i/h}(x_i, Q_F^2) \, \frac{d\hat{\sigma}^{\ell i \to f}(x_i, \Phi_f, Q_F^2)}{dx_i \, d\Phi_f}$$

QCD

In DIS, there is a formal proof of factorization

 \rightarrow We really can write the cross section in factorized form :

$$\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_i \int d\Phi_f f_{i/h}(x_i, Q_F^2) \, \frac{d\hat{\sigma}^{\ell i \to f}(x_i, \Phi_f, Q_F^2)}{dx_i \, d\Phi_f}$$

Sum over Initial (i) and final (f) parton flavors

QCD

In DIS, there is a formal proof of factorization

 \rightarrow We really can write the cross section in factorized form :

$$\begin{split} \sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_{i} \int d\Phi_{f} f_{i/h}(x_{i}, Q_{F}^{2}) \, \frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} \, d\Phi_{f}} \\ & \underset{\text{and ver}}{\overset{\text{Sum over}}{\underset{\text{and final (f)}}{\underset{\text{parton flavors}}}} = \underset{\text{phase space}}{\overset{\text{Sum over}}{\underset{\text{phase space}}}} \\ \end{split}$$

QCD

In DIS, there is a formal proof of factorization

 \rightarrow We really can write the cross section in factorized form :

$$\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_{i} \int d\Phi_{f} f_{i/h}(x_{i}, Q_{F}^{2}) \frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} d\Phi_{f}}$$
Sum over
$$\Phi_{f} \qquad f_{i/h}$$
= Final-state
= PDFs
phase space
Assumption:
$$Q^{2} = Q_{F}^{2}$$

QCD

In DIS, there is a formal proof of factorization

 \rightarrow We really can write the cross section in factorized form :

$$\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_{i} \int d\Phi_{f} f_{i/h}(x_{i}, Q_{F}^{2}) \frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} d\Phi_{f}}$$
Sum over
$$\int_{\substack{\text{Initial (i)} \\ \text{and final (f)} \\ \text{parton flavors}}} \Phi_{f} f_{i/h} = Final-state = PDFs$$

$$\int_{\substack{\text{PDFs} \\ \text{Phase space}}} Differential partornic \\ \text{Hard-scattering} \\ \text{Matrix Element(s)} \end{bmatrix}$$

P. Skands

QCD

In DIS, there is a formal proof of factorization

 \rightarrow We really can write the cross section in factorized form :

$$\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_{i} \int d\Phi_{f} f_{i/h}(x_{i}, Q_{F}^{2}) \frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} d\Phi_{f}}$$
Sum over
$$\int_{\substack{\text{Initial (i)} \\ \text{and final (f)} \\ \text{parton flavors}}} \Phi_{f} \int \frac{f_{i/h}}{f_{i/h}} = Final-state = PDFs$$

$$\int_{\substack{\text{Q}^{2} = Q_{F}^{2}}} Differential partornic$$

$$\int_{\substack{\text{Hard-scattering} \\ \text{Matrix Element(s)}}} Differential partornic$$

QCD

In DIS, there is a formal proof of factorization

 \rightarrow We really can write the cross section in factorized form :

$$\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_{i} \int d\Phi_{f} f_{i/h}(x_{i}, Q_{F}^{2}) \frac{d\hat{\sigma}^{\ell i \to f}(x_{i}, \Phi_{f}, Q_{F}^{2})}{dx_{i} d\Phi_{f}}$$
Sum over
$$\int_{\substack{\text{lnitial (i)} \\ \text{and final (f)} \\ \text{parton flavors}}} \Phi_{f} \int \frac{f_{i/h}}{f_{i/h}} = Final-state = PDFs$$

$$\int_{\substack{\text{Q}^{2} = Q_{F}^{2}}} Differential partornic$$

$$\int_{\substack{\text{Hard-scattering} \\ \text{Matrix Element(s)}}} Differential partornic$$

QCD

It's just another crossing

4

(Factorization: Caveats)

I. The proof only includes the first term in an operator product expansion in "twist" = mass dimension - spin

→ Strictly speaking, only valid for $Q^2 \rightarrow \infty$. Neglects corrections of order

2. The proof only applies to inclusive cross sections

In e⁺e⁻, in DIS, and in Drell-Yan. For everything else: factorization ansatz

3. Scheme dependence

In practice limited to MSbar + variations of Q_F

4. Interpretation of PDFs as parton number densities

Is only valid at Leading Order

QCD

$$p_j = x P_{proton}$$

 $f_a(x_a, Q_i^2)$ Parton distribution
functions (PDF)

• sum over long-wavelength histories leading to *a* with x_a at the scale $\mathcal{Q}_{l_a}^{i^2}$ (ISR)

> QCD Lecture

$$p_j = x P_{proton}$$

 $f_a(x_a, Q_i^2)$ Parton distribution
functions (PDF)

• sum over long-wavelength histories leading to *a* with x_a at the scale $\mathcal{Q}_{i_a}^{2}$ (ISR)

LHC Coverage

QCD

Lecture

$$p_j = x P_{proton}$$

 $f_a(x_a,Q_i^2)$ Parton distribution functions (PDF)

• sum over long-wavelength histories leading to *a* with x_a at the scale $\mathcal{Q}_{i,a}^{2}$ (ISR)

Shape of f(x) unknown (non-perturbative)

Different groups (CTEQ, MSTW, NNPDF, etc) use different ansätze

\rightarrow fit to measurements

 $Q \approx m_{\text{proton}}$

LHC Coverage

QCD

Evolution in Q² by DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

Require cross section independent of μ_F (at calculated order) \rightarrow RGE

QCD

LO vs NLO

 $\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_i \int d\Phi_f f_{i/h}(x_i, Q_F^2) \frac{d\hat{\sigma}^{\ell i \to f}(x_i, \Phi_f, Q_F^2)}{dx_i d\Phi_f}$ $Q^2 = (10 \text{ GeV})^2$

The "best fit" depends on the matrix elements you use when doing the fit

NLO matrix elements contain low-x enhancements (they are larger than LO×DGLAP)
→ need less low-x PDFs

(+ momentum conservation
 → more partons at high x
 → larger cross sections)

QCD

Lecture

P. Skands

LO vs NLO

 $\sigma^{\ell h} = \sum_{i} \sum_{f} \int dx_i \int d\Phi_f f_{i/h}(x_i, Q_F^2) \frac{d\hat{\sigma}^{\ell i \to f}(x_i, \Phi_f, Q_F^2)}{dx_i d\Phi_f}$ $Q^2 = (10 \text{ GeV})^2$

The "best fit" depends on the matrix elements you use when doing the fit

 NLO matrix elements contain low-x enhancements (they are larger than LO×DGLAP)
 → need less low-x PDFs

(+ momentum conservation
 → more partons at high x
 → larger cross sections)

QCD

Lecture

P. Skands

(Advanced) PDF Uncertainties

Much debate recently on PDF errors

(Advanced) PDF Uncertainties

Much debate recently on PDF errors

Still, good to $\approx 10\%$ even for LO gluon in $10^{-4} < x < 10^{-1}$ (bigger errors at lower Q²)

QCD

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

P. Skands

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

Distribution of observable: 0

Distribution of observable: O In production of X + anything Fixed Order (All Orders) $\frac{d\sigma}{d\mathcal{O}}\Big|_{ME} = \sum_{k=0} \int d\Phi_{X+k} \left| \sum_{\ell=0} M_{X+k}^{(\ell)} \right|^2 \delta \left(\mathcal{O} - \mathcal{O}(\{p\}_{X+k}) \right)$ $\int_{Cross Section} \int_{Cross Sect$

Truncate at $k = 0, \ell = 0$, \rightarrow Born Level = First Term Lowest order at which X happens

QCD

Distribution of observable: O In production of X + anything Fixed Order (All Orders) $\frac{d\sigma}{d\mathcal{O}}\Big|_{ME} = \sum_{k=0} \int d\Phi_{X+k} \left| \sum_{\ell=0} M_{X+k}^{(\ell)} \right|^2 \delta \left(\mathcal{O} - \mathcal{O}(\{p\}_{X+k}) \right)$ $\int_{Cross Section} \int_{Cross Sect$

Truncate at $k = n, \ell = 0$, → Leading Order for X + n Lowest order at which X + n happens

QCD

Distribution of observable: O In production of X + anything Fixed Order (All Orders) $\frac{d\sigma}{d\mathcal{O}}\Big|_{ME} = \sum_{k=0}^{\infty} \int d\Phi_{X+k} \left| \sum_{\ell=0}^{\infty} M_{X+k}^{(\ell)} \right|_{\delta}^{2} \left(\mathcal{O} - \mathcal{O}(\{p\}_{X+k}) \right)$ $\int_{Cross Section}^{Cross Section} \int_{Sum over "anything" \approx legs}^{Sum over all anything matrix Elements} \int_{Cross Section}^{Sum over all anything matrix elements} \int_{Cross Section}^{Cross Section} \int_{Cross Section}^{Sum over "anything" \approx legs} \int_{Cross Section}^{Sum over all anything matrix elements} \int_{Cross Section}^{Sum over$

Truncate at $k + \ell = n$, \rightarrow NⁿLO for X Includes N^{n-I}LO for X+I, Nⁿ⁻²LO for X+2,...

QCD

Loops and Legs

Another representation

QCD

Lecture

Loops and Legs

Loops and Legs

Another representation

Loops and Legs

Another representation

P. Skands

Cross sections at LO

QCD Lecture

Cross sections at LO

Born + n

Infrared divergent \rightarrow Must be regulated

R = some Infrared Safe phase space region

(Often a cut on $p_{\perp} > n \text{ GeV}$)

Careful not to take it too low!

Cross sections at LO

Born + n

Infrared divergent \rightarrow Must be regulated

R = some Infrared Safe phase space region

(Often a cut on $p_{\perp} > n$ GeV)

Careful not to take it too low!

if $\sigma(X+n) \approx \sigma(X)$ you got a problem perturbative expansion not reliable

QCD

Lecture II

Recall: Conformal QCD

Naively, brems suppressed by $\alpha_s \approx 0.1$

Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet ...

Example: 100 GeV can be "soft" at the LHC

→ More on this in lectures on Monte Carlo & Matching

SUSY pair production at 14 TeV, with $M_{SUSY} \approx 600 \text{ GeV}$

LHC - sps1a - m~600 GeV		Plehn, Rainwater, PS PLB645(2007)217					
FIXED ORDER pQCD	$\sigma_{\rm tot}[{\rm pb}]$	${ ilde g}{ ilde g}$	$\tilde{u}_L \tilde{g}$	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	TT	
$p_{T,j} > 100 { m GeV}$ inclusive X + 1 "jet" — inclusive X + 2 "jets" —	σ_{0j} $\rightarrow \sigma_{1j}$ $\rightarrow \sigma_{2j}$	4.83 2.89 1.09	$5.65 \\ 2.74 \\ 0.85$	$0.286 \\ 0.136 \\ 0.049$	$0.502 \\ 0.145 \\ 0.039$	$1.30 \\ 0.73 \\ 0.26$	σ for X + jets much larger than naive estimate
$p_{T,j} > 50 \text{ GeV}$	$\sigma_{0j} \ \sigma_{1j} \ \sigma_{0j}$	4.83 5.90 4.17	5.65 5.37 3.18	0.286 0.283 0.179	0.502 0.285 0.117	1.30 1.50 1.21	σ for 50 GeV jets \approx larger than total cross section \rightarrow not under control
(Computed with SUSY-MadGraph)							

QCD

Cross sections at NLO

(note: this is not the 1-loop diagram squared)

QCD Lecture

Cross sections at NLO

KLN Theorem (Kinoshita-Lee-Nauenberg)

Singularities cancel at complete order (only finite terms left over)

$$= \sigma_{\text{Born}} + \text{Finite}\left\{ \int |M_{X+1}^{(0)}|^2 \right\} + \text{Finite}\left\{ \int 2\text{Re}[M_X^{(1)}M_X^{(0)*}] \right\}$$

$$\sigma_{\rm NLO}(e^+e^- \to q\bar{q}) = \sigma_{\rm LO}(e^+e^- \to q\bar{q}) \left(1 + \frac{\alpha_s(E_{\rm CM})}{\pi} + \mathcal{O}(\alpha_s^2)\right)$$

QCD

How do I get finite{Real} and finite{Virtual} ?

- First step: classify IR singularities using universal functions
- **EXAMPLE:** factorization of amplitudes in the soft limit

P. Skands

QCD

How do I get finite{Real} and finite{Virtual} ?

- First step: classify IR singularities using universal functions
- **EXAMPLE:** factorization of amplitudes in the soft limit

 $|\mathcal{M}_{n+1}(1,\cdots,i,j,k,\cdots,n+1)|^2 \xrightarrow{j_g \to 0} g_s^2 \mathcal{C}_{ijk} S_{ijk} |\mathcal{M}_n(1,\cdots,i,k,\cdots,n+1)|^2$

Universal
"Soft Eikonal"
$$S_{ijk}(m_I, m_K) = \frac{2s_{ik}}{s_{ij}s_{jk}} - \frac{2m_I^2}{s_{ij}^2} - \frac{2m_K^2}{s_{jk}^2} \qquad s_{ij} \equiv 2p_i \cdot p_j$$

Add and subtract IR limits (SOFT and COLLINEAR)

$$d\sigma_{NLO} = \int_{d\Phi_{m+1}} \left(\underbrace{d\sigma_{NLO}^R}_{0} - \underbrace{d\sigma_{NLO}^S}_{0} \right) + \left[\int_{d\Phi_{m+1}} \underbrace{d\sigma_{NLO}^S}_{0} + \int_{d\Phi_m} \underbrace{d\sigma_{NLO}^V}_{0} \right]$$
Dipole Seymour Global

Finite by Universality

Finite by KLN

Dipoles (Catani-Seymour) Global Antennae (Gehrmann, Gehrmann-de Ridder, Glover)

Sector Antennae (Kosower)

. . .

Lecture II

QCD

Add and subtract IR limits (SOFT and COLLINEAR)

Finite by Universality

Finite by KLN

Choice of subtraction terms:

- Singularities mandated by gauge theory
- Non-singular terms: up to you (added and subtracted, so vanish)

Dipoles (Catani-Seymour) **Global Antennae** (Gehrmann, Gehrmann-de Ridder. Glover) Sector Antennae (Kosower)

. . .

QCD

Lecture

P. Skands

Add and subtract IR limits (SOFT and COLLINEAR)

Finite by KLN

Choice of subtraction terms:

Singularities mandated by gauge theory

Non-singular terms: up to you (added and subtracted, so vanish)

$$\begin{split} \frac{|\mathcal{M}(Z^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(Z^0 \to q_I \bar{q}_K)|^2} &= g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] \\ \frac{\mathcal{M}(H^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(H^0 \to q_I \bar{q}_K)|^2} &= g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \\ \frac{\mathrm{SOFT}}{\mathrm{SOFT}} & \mathrm{COLLINEAR} + \mathrm{F} \end{split}$$

Dipoles (Catani-Seymour) **Global Antennae** (Gehrmann, Gehrmann-de Ridder. Glover) Sector Antennae (Kosower)

. . .

QCD

Structure of $\sigma(NNLO)$

Lecture II

Recall: Scale Dependence

Regularization of IR and UV divergences

E.g., using dimensional reg \rightarrow unphysical scales μ_F and μ_R These are artificial scales **we** introduce, to handle the calculation At infinite order (+ non-pert), all dependence on them must vanish But in a fixed-order truncation, a residual dependence remains

QCD

Recall: Scale Dependence

Regularization of IR and UV divergences

- E.g., using dimensional reg \rightarrow unphysical scales μ_F and μ_R
- These are artificial scales we introduce, to handle the calculation
- At infinite order (+ non-pert), all dependence on them must vanish
- But in a fixed-order truncation, a residual dependence remains

Why scale variation ~ uncertainty?

Any scale dependence of calculated orders must be canceled by the contribution from the uncalculated orders (+ non-pert)

$$\left(\alpha_s(Q'^2) - \alpha_s(Q^2)\right) |M|^2 = \alpha_s^2(Q^2)|M|^2 + \dots$$

Next order must include *at least* a term that exactly cancels this one (in addition to whatever *other* terms the next order also contains)

Jets

Lecture II

QCD

Jets as Projections

Projections to jets provides a universal view of event

Illustrations by G. Salam

There is no unique or "best" jet definition

YOU decide how to look at event

- The construction of jets is inherently ambiguous
 - I. Which particles get grouped together?

JET ALGORITHM (+ parameters)

2. How will you combine their momenta?

RECOMBINATION SCHEME (e.g., 'E' scheme: add 4-momenta)

QCD

There is no unique or "best" jet definition

YOU decide how to look at event

- The construction of jets is inherently ambiguous
 - I. Which particles get grouped together?

JET ALGORITHM (+ parameters)

2. How will you combine their momenta?

RECOMBINATION SCHEME (e.g., 'E' scheme: add 4-momenta)

Ambiguity complicates life, but gives flexibility in one's view of events → Jets non-trivial!

TONES VIEW OT EVENTS -> JETS NON-TRIVIAL

QCD

Types of Algorithms

I. Sequential Recombination

(you'll hear more in lectures on Jet Substructure)

Lecture II

P. Skands

Types of Algorithms

I. Sequential Recombination

(you'll hear more in lectures on Jet Substructure)

Take your 4-vectors. Combine the ones that have the lowest 'distance measure'

Different names for different distance measures Durham k_T : $\Delta R_{ij}^2 \times \min(k_{Ti}^2, k_{Tj}^2)$ Cambridge/Aachen : ΔR_{ij}^2 Anti- k_T : $\Delta R_{ij}^2 / \max(k_{Ti}^2, k_{Tj}^2)$ ArClus (3-2): $p_{\perp}^2 = s_{ij}s_{jk}/s_{ijk}$

$$k_{Ti}^2 = E_i^2 (1 - \cos \theta_{ij})$$
$$\Delta R_{ij}^2 = (\eta_i - \eta_j)^2 + \Delta \phi_{ij}^2$$

+ Prescription for how to combine 2 momenta into 1

(or 3 momenta into 2)

 \rightarrow New set of (n-1) 4-vectors

QCD

Lecture II

P. Skands

Types of Algorithms

I. Sequential Recombination

(you'll hear more in lectures on Jet Substructure)

Take your 4-vectors. Combine the ones that have the lowest 'distance measure'

Different names for different distance measures Durham k_T : $\Delta R_{ij}^2 \times \min(k_{Ti}^2, k_{Tj}^2)$

Cambridge/Aachen : ΔR_{ij}^2 Anti-k_T : $\Delta R_{ij}^2 / \max(k_{Ti}^2, k_{Tj}^2)$ ArClus (3-2): $p_{\perp}^2 = s_{ij}s_{jk}/s_{ijk}$

+ Prescription for how to combine 2 momenta into 1 (or 3 momenta into 2)

New set of (n-1) 4-vectors

QCD

Why k_T (or p_T or ΔR)?

Attempt to (approximately) capture universal jetwithin-jet-witin-jet... behavior

Approximate full matrix element

$$\frac{|M_{X+1}^{(0)}(s_{i1}, s_{1k}, s)|^2}{|M_X^{(0)}(s)|^2} = 4\pi\alpha_s C_F \left(\frac{2s_{ik}}{s_{i1}s_{1k}} + \dots\right)$$

"Eikonal" (universal, always there)

by Leading-Log limit of QCD \rightarrow universal dominant terms

 $\frac{\mathrm{d}s_{i1}\mathrm{d}s_{1k}}{s_{i1}s_{1k}} \xrightarrow{\rightarrow} \frac{\mathrm{d}p_{\perp}^{2}}{p_{\perp}^{2}} \frac{\mathrm{d}z}{z(1-z)} \xrightarrow{\rightarrow} \frac{\mathrm{d}E_{1}}{\min(E_{i},E_{1})} \frac{\mathrm{d}\theta_{i1}}{\theta_{i1}} \quad (E_{1} \ll E_{i}, \theta_{i1} \ll 1) \quad ,\dots$ Rewritings in soft/collinear limits

"smallest" k_T (or p_T or θ_{ij} , or ...) \rightarrow largest Eikonal

QCD

Types of Algorithms

2. "Cone" type

Take your 4-vectors. Select a procedure for which "test cones" to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations thereof, e.g., CDF midpoint algorithm) = "seeds"

Unseeded : smoothly scan over entire event, trying everything

Sum momenta inside test cone \rightarrow new test cone direction

Iterate until stable (test cone direction = momentum sum direction)

QCD

Types of Algorithms

2. "Cone" type

Take your 4-vectors. Select a procedure for which "test cones" to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations thereof, e.g., CDF midpoint algorithm) = "seeds"

Unseeded : smoothly scan over entire event, trying everything

Sum momenta inside test cone \rightarrow new test cone direction

Iterate until stable (test cone direction = momentum sum direction)

Warning: seeded algorithms are INFRARED UNSAFE

QCD

Infrared Safety

Definition

An observable is infrared safe if it is insensitive to

SOFT radiation:

Adding any number of infinitely soft particles (zero-energy) should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two comoving particles (conserving the total momentum and energy) should not change the value of the observable

QCD

Safe vs Unsafe Jets

May look pretty similar in experimental environment ... But it's not nice to your theory friends ...

Unsafe: badly divergent in pQCD \rightarrow large IR corrections:

IR Sensitive Corrections $\propto \alpha_s^n \log^m \left(\frac{Q_{\rm UV}^2}{Q_{\rm ID}^2}\right)$, $m \le 2n$

Even if we have a hadronization model with which to compute these corrections, the dependence on it \rightarrow larger uncertainty

Safe \rightarrow IR corrections power suppressed:

IR Safe Corrections $\propto \frac{Q_{IR}^2}{Q_{IW}^2}$ Can still be computed (MC) but can also be neglected (pure pQCD)

Safe vs Unsafe Jets

May look pretty similar in experimental environment ... But it's not nice to your theory friends ...

Unsafe: badly divergent in pQCD \rightarrow large IR corrections:

IR Sensitive Corrections $\propto \alpha_s^n \log^m \left(\frac{Q_{\rm UV}^2}{Q_{\rm D}^2}\right)$, $m \le 2n$

Even if we have a hadronization model with which to compute these corrections, the dependence on it \rightarrow larger uncertainty

Safe \rightarrow IR corrections power suppressed:

IR Safe Corrections $\propto \frac{Q_{\text{IR}}^2}{Q_{\text{UV}}^2}$ Can still be computed (MC) but can also be neglected (pure pQCD)

Let's look at a specific example ...

Iterative Cone Progressive Removal

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

Iterative Cone Progressive Removal

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

Iterative Cone Progressive Removal

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

Iterative Cone Progressive Removal

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

41
Iterative Cone Progressive Removal

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞

Slides from G. Salam

Iterative Cone Progressive Removal

Slides from G. Salam

Iterative Cone Progressive Removal

Consequences of Collinear Unsafety

Infinities cancel

Collinear Unsafe

Infinities do not cancel

Invalidates perturbation theory

QCD

Consequences of Collinear Unsafety

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$\alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \infty \to \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \ln p_t / \Lambda \to \alpha_{\rm s}^2 + \underbrace{\alpha_{\rm s}^3 + \alpha_{\rm s}^3}_{\text{BOTH WASTED}}$$

Stereo Vision

Use IR Safe algorithms

http://www.fastjet.fr/

To study short-distance physics

These days, \approx as fast as IR unsafe algos and widely implemented (e.g., FASTJET), including

"Cone-like": SiSCone, Anti-k_T, ...

"Recombination-like": k_T , Cambridge/Aachen, Anti- k_T ...

Then use IR Sensitive observables

E.g., number of tracks, identified particles, ...

To explicitly check hadronization and other IR models

QCD

Stereo Vision

Use IR Safe algorithms

http://www.fastjet.fr/

To study short-distance physics

These days, \approx as fast as IR unsafe algos and widely implemented (e.g., FASTJET), including

"Cone-like": SiSCone, Anti-k_T, ... "Recombination-like": k_T, Cambridge/Aachen, Anti-k_T...

Then use IR Sensitive observables

E.g., number of tracks, identified particles, ...

To explicitly check hadronization and other IR models

QCD

Introduction to QCD

- I. Fundamentals of QCD
- 2. Jets and Fixed-Order QCD
- **3. Monte Carlo Generators and Parton Showers**
- 4. Matching at LO and NLO
- 5. QCD in the Infrared

Note: slides posted at: www.cern.ch/skands/slides

QCD

Supplementary Slides

Evolution in Q² by DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

Require cross section independent of μ_F (at calculated order) \rightarrow RGE

$$\frac{df_i(x_i,\mu_F^2)}{d\ln\mu_F^2} = \sum_j \int_{x_i}^1 \frac{dx_j}{x_j} f_j(x_j,\mu_F^2) \frac{\alpha_s}{2\pi} P_{j\to ik}\left(\frac{x_i}{x_j}\right)$$

Altarelli-Parisi Splitting Kernels

$$\begin{split} P_{\mathbf{q} \to \mathbf{q}\mathbf{g}}(z) &= C_F \, \frac{1+z^2}{1-z} \,, \\ P_{\mathbf{g} \to \mathbf{g}\mathbf{g}}(z) &= N_C \, \frac{(1-z(1-z))^2}{z(1-z)} \,, \\ P_{\mathbf{g} \to \mathbf{q}\overline{\mathbf{q}}}(z) &= T_R \left(z^2 + (1-z)^2\right) \,, \\ P_{\mathbf{q} \to \mathbf{q}\gamma}(z) &= e_{\mathbf{q}}^2 \, \frac{1+z^2}{1-z} \,, \\ P_{\ell \to \ell\gamma}(z) &= e_{\ell}^2 \, \frac{1+z^2}{1-z} \,, \end{split}$$

Note: to be used directly in above equation, these splitting kernels should be defined with the "plus prescription"

For example:

$$\frac{1+z^2}{1-z} \to \left(\frac{1+z^2}{1-z}\right)_+$$

Reason for this covered in next two slides

Lecture II

PDFDGLAP : Details

First term: some partons flow from higher y=x/z to x (POSITIVE) Second term: some partons at x flow to lower y=zx (NEGATIVE)

How can they be the same equation?

PDF DGLAP : Details

Awkward to write real and virtual parts separately. Use more compact notation:

$$\frac{dq(x,\mu^2)}{d\ln\mu^2} = \frac{\alpha_s}{2\pi} \underbrace{\int_x^1 dz \, P_{qq}(z) \, \frac{q(x/z,\mu^2)}{z}}_{P_{qq}\otimes q}, \qquad P_{qq} = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

This involves the *plus prescription*:

$$\int_0^1 dz \, [g(z)]_+ \, f(z) = \int_0^1 dz \, g(z) \, f(z) - \int_0^1 dz \, g(z) \, f(1)$$

z = 1 divergences of g(z) cancelled if f(z) sufficiently smooth at z = 1

Lecture II