

Skands, TASI Lectures, arXiv:1207.2389

$Z \rightarrow 3$ Jets

Size of NLO "K" factor over phase space

(a) $\mu_{\mathrm{PS}}=\sqrt{s}$
(b) $\mu_{\mathrm{PS}}=p_{\perp}$

$\mathbf{Z} \rightarrow \mathbf{3}$ Jets Size of NLO "K" factor over phase space

The "CMW" factor
$k_{\text {CMW }}=\exp \left(\frac{67-3 \pi^{2}-10 n_{F} / 3}{2\left(33-2 n_{F}\right)}\right)=\left\{\begin{array}{l}1.513 n_{F}=6 \\ 1.569 n_{F}=5 \\ 1.618 n_{F}=4 \\ 1.661 n_{F}=3\end{array}\right.$

$\mu_{\mathrm{PS}}=p_{\perp}$, with CMW

2 Loop: $a_{s}(M z)=0.12 \quad \Lambda_{3}=0.37 \quad \Lambda_{4}=0.32 \quad \Lambda_{5}=0.23$
1 Loop: $a_{s}\left(M_{z}\right)=0.14 \quad \Lambda_{3}=0.37 \quad \Lambda_{4}=0.33 \quad \Lambda_{5}=0.26$
(In all cases, 5-flavor running is still used above mt)

Variations in $\mathrm{e}^{+} \mathrm{e}^{-}$

Pythia 6 "Perugia 2012 : Variations"
μ_{R} by factor 2 in either direction
(with central choice $\mu_{R}=p_{T}$, and $a_{S}\left(M_{z}\right)^{(1)} \sim 0.14$)

\rightarrow Factor 2 looks pretty extreme?

$$
\propto \mathrm{C}_{\mathrm{s}}^{1}
$$

See mcplots.cern.ch

$\alpha \mathrm{as}^{4}$
Beware! as pileup

Variations in pp

Pythia 6 "Perugia 2012 : Variations"

Skands, arXiv:1005.3457
Skands, arXiv:1005.3457
μ_{R} by factor 2 in either direction
(with central choice $\mu_{R}=p_{T}$, and $a_{s}\left(M_{z}\right)^{(1)} \sim 0.14$)

See mcplots.cern.ch
 reasonable?

Matrix Elements (E.g., AlpGen/MadGraph + Herwig/Pythia) W+jets

NJets

Jet Shape PS

Jet Shape ME+PS

NJets: dominated by ME (+Sudakov from PS) Jet Shapes: dominated by PS

From multi-leg LO to multi-leg NLO

Multi-scale problems

E.g., in context of ME matching with many legs

Example: W+3

1: MW
2: MW + Sum(IpTI)
3: -"- (quadratically)
4: Geometric mean pT (~PS)
5: Arithmetic mean pT

