On α_{s} variations in MC generators

Peter Skands (CERN TH)
(from October 1st $2014 \rightarrow$ Monash University, Melbourne)

Disclaimer: these slides are rather basic.
Transcribed from blackboard notes for Collider Cross Talk presentation

Where is α_{s} ?

$a_{s}\left(\mathrm{M}_{z}\right)$

HEP MC GENERATOR

- ISR (0.137)
- ME (0.1265) • MPI (0.127)
- FSR (0.1383)
(PYTHIA 8 DEFAULTS)
- PDF
- PDG: 0.1185(6)

What is α_{s} ?

$$
\begin{gathered}
\mu^{2} \frac{d \alpha_{s}}{d \mu^{2}}=\frac{d \alpha_{s}}{d \ln \mu^{2}}=\beta\left(\alpha_{s}\right) \quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right) \\
\alpha_{s}\left(\mu^{2}\right)=\alpha_{s}\left(M_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(M_{Z}^{2}\right) \ln \left(\mu^{2} / M_{Z}^{2}\right)+\ldots} \\
b_{0}=\frac{11 C_{A}-4 T_{R} n_{F}}{12 \pi} \quad b_{1}=\frac{17 C_{A}^{2}-10 T_{R} C_{A} n_{F}-6 T_{R} C_{F} n_{F}}{24 \pi^{2}}=\frac{153-19 n_{F}}{24 \pi^{2}}
\end{gathered}
$$

$$
\alpha_{s}^{(1)}\left(\mu^{2}\right)=\frac{1}{b_{0} \ln \left(\mu^{2} / \Lambda^{2}\right)} \quad \Lambda \sim 200 \mathrm{MeV}
$$

$$
\alpha_{s}^{(2)}\left(\mu^{2}\right)=\frac{1}{b_{0} \ln \left(\mu^{2} / \Lambda^{2}\right)}-\frac{b_{1}}{b_{0}} \frac{\ln \ln \left(\mu^{2} / \Lambda^{2}\right)}{\ln ^{2}\left(\mu^{2} / \Lambda^{2}\right)}
$$

Main Point:

Choose $\mathrm{a}_{\mathrm{s}}(\mathrm{Mz})$?
Choose ^?
Choose k in $\mathrm{a}_{\mathrm{s}}(\mathrm{k} \mu)$?
All Equivalent

What is α_{s} ?

Different MC codes use different choices to parametrize

E.g., one code may ask you to specify Λ

Another may ask you to give the effective value of $\alpha_{s}\left(\mathrm{M}_{z}\right)$
And/or you may specify a pre-factor, k, in $\alpha_{s}(k \mu)$

Use eqs on previous slide to translate

Examples:

$$
\begin{aligned}
k=0.38 & \Longrightarrow \alpha_{s}\left(k M_{Z}\right)=0.14 \text { for } \alpha_{s}^{(1)}\left(M_{Z}\right)=0.12 \\
k=0.69 & \Longrightarrow \alpha_{s}\left(k M_{Z}\right)=0.127 \text { for } \alpha_{s}^{(1)}\left(M_{Z}\right)=0.12
\end{aligned}
$$

1-Loop vs 2-Loop running

From $\overline{\mathrm{MS}}$ to MC

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

$$
P\left(\alpha_{s}, z\right)=\frac{\alpha_{s}}{2 \pi} \stackrel{A}{\mid}_{F}^{(1)} \frac{1+z^{2}}{1-z}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \frac{A^{(2)}}{1-z}
$$

Eg Analytic resummation (in Mellin space): General Structure

$$
\begin{aligned}
& \propto \exp \left[\int _ { 0 } ^ { 1 } d z \frac { z ^ { N - 1 } - 1 } { 1 - z } \left[\int \frac{d p_{\perp}^{2}}{p_{\perp}^{2}}\left(A\left(\alpha_{s}\right)+{\left.\left.\left.\stackrel{\downarrow}{ }{ }^{\text {for DIS }}\left(\alpha_{s}\right)\right)\right]\right]}^{1-2}\right)\right.\right. \\
& A\left(\alpha_{s}\right)=A^{(1)} \frac{\alpha_{s}}{n}+A^{(2)}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+\ldots B^{(1)}=-3 C_{F} / 2 \\
& A^{(2)}=\frac{1}{2} C_{F}\left(C_{A}\left(\frac{67}{18}-\frac{1}{6} \pi^{2}\right)-\frac{5}{9} N_{F}\right)=\frac{1}{2} C_{F} K_{\mathrm{CMW}} \\
& \text { Replace } \\
& \text { (for } z \rightarrow 1 \text { : soft gluon limit): } \\
& P_{i}\left(\alpha_{s}, z\right)=\frac{C_{i} \frac{\alpha_{s}}{\pi}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}}{2 \pi}\right)}{1-z}
\end{aligned}
$$

From $\overline{\mathrm{MS}}$ to MC

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

$$
P\left(\alpha_{s}, z\right)=\frac{\alpha_{s}}{2 \pi} \stackrel{A}{\mid}_{F}^{(1)} \frac{1+z^{2}}{1-z}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \frac{A^{(2)}}{1-z}
$$

Replace
(for $z \rightarrow 1$: soft gluon limit):

$$
P_{i}\left(\alpha_{s}, z\right)=\frac{C_{i} \frac{\alpha_{s}}{\pi}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}}{2 \pi}\right)}{1-z}
$$

$$
\begin{gathered}
\alpha_{s}^{(\mathrm{MC})}=\alpha_{s}^{(\overline{\mathrm{MS}})}\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}^{(\overline{\mathrm{MS}})}}{2 \pi}\right) \\
\Lambda_{\mathrm{MC}}=\Lambda_{\overline{\mathrm{MS}}} \exp \left(\frac{K_{\mathrm{CMW}}}{4 \pi \beta_{0}}\right) \sim 1.57 \Lambda_{\overline{\mathrm{MS}}}
\end{gathered}
$$

Note also: used $\mathrm{mu}^{2}=\mathrm{p}^{2}=(1-\mathrm{z}) \mathrm{Q}^{2}$
Amati, Bassetto, Ciafaloni, Marchesini, Veneziano, 1980

$Z \rightarrow 3$ Jets

Size of NLO "K" factor over phase space

(a) $\mu_{\mathrm{PS}}=\sqrt{s}$
(b) $\mu_{\mathrm{PS}}=p_{\perp}$

$\mathbf{Z} \rightarrow \mathbf{3}$ Jets Size of NLO "K" factor over phase space

The "CMW" factor
: Constant shift by
$k_{\mathrm{CMW}}=\exp \left(\frac{67-3 \pi^{2}-10 n_{F} / 3}{2\left(33-2 n_{F}\right)}\right)=\left\{\begin{array}{l}1.513 n_{F}=6 \\ 1.569 n_{F}=5 \\ 1.618 n_{F}=4 \\ 1.661 n_{F}=3\end{array}\right.$

$$
\frac{\alpha_{s}}{2 \pi} \frac{\beta_{0}}{2} \ln \left(k_{\mathrm{CMW}}^{2}\right) \sim 0.07
$$

(b) $\mu_{\mathrm{PS}}=p_{\perp}$

$\mu_{\mathrm{PS}}=p_{\perp}$, with CMW

2 Loop: $a_{s}(M z)=0.12 \quad \Lambda_{3}=0.37 \quad \Lambda_{4}=0.32 \quad \Lambda_{5}=0.23$
1 Loop: $a_{s}\left(M_{z}\right)=0.14 \quad \Lambda_{3}=0.37 \quad \Lambda_{4}=0.33 \quad \Lambda_{5}=0.26$
(In all cases, 5-flavor running is still used above mt)

Variations in $\mathrm{e}^{+} \mathrm{e}^{-}$

Pythia 6 "Perugia 2012 : Variations"
μ_{R} by factor 2 in either direction
(with central choice $\mu_{R}=p_{T}$, and $a_{S}\left(M_{z}\right)^{(1)} \sim 0.14$) Skands, arXiv:1005.3457

\rightarrow Factor 2 looks pretty extreme?

$$
\propto \mathrm{C}_{\mathrm{s}}^{1}
$$

See mcplots.cern.ch

$\propto \mathrm{O}_{\mathrm{s}}{ }^{4}$
Beware! as pileup

Variations in pp

Pythia 6 "Perugia 2012 : Variations" Skands, arXiv:1005.3457
μ_{R} by factor 2 in either direction
(with central choice $\mu_{R}=p_{T}$, and $a_{s}\left(M_{z}\right)^{(1)} \sim 0.14$)

Matrix Element Matching

$$
\begin{aligned}
& \alpha_{s}^{\mathrm{ME}} \rightarrow \text { Real } \\
& \alpha_{s}^{\mathrm{PS}} \rightarrow \text { Virtual }
\end{aligned}
$$

Different Codes?
 Different Parameters?

$$
\begin{gathered}
\sigma_{F+1}^{\text {incl }}=\int_{Q_{F}^{2}}^{s} \mathrm{~d} \Phi_{F+1} \alpha_{s}^{\mathrm{MG}}\left|M_{F+1}\right|^{2} \\
\sigma_{F}^{\mathrm{excl}}=\sigma_{F}^{\text {incl }}-\int \mathrm{d} \Phi_{F} \int_{Q_{F}^{2}}^{s} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \mathrm{~d} z \sum_{i} \frac{\alpha_{s}^{\mathrm{SG}}}{2 \pi} P_{i}(z)\left|M_{F}\right|^{2}+\mathscr{O}\left(\alpha_{s}^{2}\right)
\end{gathered}
$$

Different \wedge values

$\alpha_{s}^{\mathrm{MG}} \neq \alpha_{s}^{\mathrm{SG}} \Longrightarrow \alpha_{s}^{2} b_{0} \ln \left(\frac{\Lambda_{\mathrm{MG}}^{2}}{\Lambda_{\mathrm{SG}}^{2}}\right) \frac{\mathrm{d} Q^{2}}{Q^{2}} \sum_{i} P_{i}(z)\left|M_{F}\right|^{2}$

Different running orders:

$$
\mathscr{O}\left(\alpha_{s}^{3} \ln \left(p_{\mathrm{T}}^{2} / \Lambda^{2}\right)\right) \frac{\mathrm{d} Q^{2}}{Q^{2}} \sum_{i} P_{i}(z)\left|M_{F}\right|^{2}
$$

Matrix Elements (E.g., AlpGen/MadGraph + Herwig/Pythia) W+jets

NJets

Jet Shape PS

Jet Shape ME+PS

NJets: dominated by ME (+Sudakov from PS) Jet Shapes: dominated by PS

From multi-leg LO to multi-leg NLO

Multi-Scale Exercise

If needed, can convert from multi-scale to single-scale

$$
\begin{aligned}
\alpha_{s}\left(\mu_{1}\right) \alpha_{s}\left(\mu_{2}\right) \cdots \alpha_{s}\left(\mu_{n}\right) & =\prod_{i=1}^{n} \alpha_{s}(\mu)\left(1+b_{0} \alpha_{s} \ln \left(\frac{\mu^{2}}{\mu_{i}^{2}}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right) \\
& =\alpha_{s}^{n}(\mu)\left(1+b_{0} \alpha_{s} \ln \left(\frac{\mu^{2 n}}{\mu_{1}^{2} \mu_{2}^{2} \cdots \mu_{n}^{2}}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
\end{aligned}
$$

by taking geometric mean of scales

Multi-scale problems

E.g., in context of ME matching with many legs

Example: W+3

1: MW
2: MW + Sum(lpTI)
3: -"- (quadratically)
4: Geometric mean pT (~PS)
5: Arithmetic mean pT

