Event structure and small-x issues at 100 TeV

Peter Skands (CERN TH)

What does the average collision look like?

How many of them are there? (σ_{pileup})

How much energy in the Underlying Event? (UE)

Image Credits: blepfo (deviantart.com)

Event Structure at PP Colliders

Dominated by QCD

More than just a perturbative expansion in α_{s}

Emergent phenomena:

Jets (the QCD fractal) \leftrightarrow amplitude structures \leftrightarrow fundamental quantum field theory. Precision jet (structure) studies.

Strings (strong gluon fields) \leftrightarrow quantum-classical correspondence. String physics. Dynamics of hadronization phase transition.

Hadrons \leftrightarrow Spectroscopy (incl excited and exotic states), lattice QCD, (rare) decays, mixing, light nuclei. Hadron beams \rightarrow MPI, diffraction, ...

Modeling Hadronic Final States

Calculate Everything \approx solve QCD \rightarrow requires compromise!

Monte Carlo Event Generators:

Explicit Dynamical Modeling → complete events (can evaluate any observable you want)

Factorization \rightarrow Split the problem into many (nested) pieces

+ Quantum mechanics → Probabilities → Random Numbers (MC)

Soft Physics

Soft Physics : Theory Models

P. Skands

4

NCIAROO

Pythia 8.183

10⁻¹

 $\sigma_{2\rightarrow 2} > \sigma_{pp}$ interpreted as consequence of each pp containing several $2\rightarrow 2$ interactions: MPI $O_{2\rightarrow 2}(P_{T} \ge P_{Tmin}) v \ge P_{Tmin}$ $O_{2\rightarrow 2}(P_{T} \ge P_{Tmin}) v \ge P_{Tmin}$ section [r section 10⁴ –**■**– TOTEM σ_{INEL} –**■**– TOTEM σ_{INEL} 10^{3} P. Sk ŝ

Soft MPI

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617 + PYTHIA "Perugia Tunes": PS, PRD82 (2010) 074018

Low-x Issues (in MC/PDF context)

Low x : parton carries tiny fraction of beam energy.

E.g.:
$$x_{\Lambda} = \frac{2\Lambda_{\rm QCD}}{E_{\rm CM}}$$
 $x_{\perp 0} = \frac{2p_{\perp 0}}{E_{\rm CM}}$ 7 TeV: $x \sim 10^{-5} - 10^{-4}$
100 TeV: $x \sim 10^{-6} - 10^{-4}$

Higher x: momenta > Λ_{QCD}

 $\rightarrow \ pQCD \sim OK$

Smaller *x* : strong non-perturbative / colour-screening / saturation effects expected

What does a PDF even mean? Highly relevant for MPI (& ISR) PDF *must* be a probability density \rightarrow can *only* use LO PDFs

(+ Constraints below $x \sim 10^{-4}$ essentially just momentum conservation + flavour sum rules)

MPI models and Low x

Gluon PDF at low Q^2 drives MPI

EXAMPLE: PYTHIA 8

Range of x values probed by different MPI tunes

Controlling these issues will require an improved understanding of the interplay between low-x PDFs, saturation / screening, and MPI in MC context. (+ Clean model-independent experimental constraints!) Not automatic: Communities don't speak same language (+ low visibility)

Recent PYTHIA Models/Tunes

& Extrapolations to Event Structure at 100 TeV

PYTHIA 8.1

Current Default = **4C** (from 2010) Tunes 2C & 4C: e-Print: arXiv:1011.1759 LEP tuning undocumented (from 2009) LHC tuning only used very early data based on CTEQ6L1

Aims for the Monash 2013 Tune

Tune:ee = 7 Tune:pp = 14

Monash 2013 Tune: e-Print: arXiv:1404.5630

- Revise (and document) constraints from e⁺e⁻ measurements
 - In particular in light of possible interplays with LHC measurements
- Test drive the new NNPDF 2.3 LO PDF set (with $\alpha_s(m_Z) = 0.13$) for pp & ppbar
 - Update min-bias and UE tuning + energy scaling \rightarrow 2013
 - Follow "Perugia" tunes for PYTHIA 6: use same α_s for ISR and FSR
 - Use the PDF value of α_s for both hard processes and MPI

PYTHIA 6.4 (warning: no longer actively developed)185Perugia Tunes: e-Print: arXiv:1005.3457Default: still rather old Q²-ordered tune \sim Tevatron Tune A(+ 2011 & 2012 updates added as appendices)Most recent: Perugia 2012 set of pT-ordered tunes (370 - 382) + Innsbruck (IBK) Tunes (G. Rudolph)

Note: I will focus on default / author tunes here (Important complementary efforts undertaken by LHC experiments)

$\frac{Tuning}{\text{means different things to different people}}$

10% agreement is great for (N)LO + LL

MB/UE/Soft: larger uncertainties since driven by non-factorizable and non-perturbative physics

Complicated dynamics: If a model is simple, it is wrong (T. Sjöstrand)

Cross Sections & Energy Scaling

Pileup rate $\propto \sigma_{\text{tot}}(s) = \sigma_{\text{el}}(s) + \sigma_{\text{inel}}(s) \propto s^{0.08}$ or $\ln^2(s)$?

Donnachie-Landshoff (or 0.096?)

Froissart-Martin Bound

Event Properties: Minimum-Bias How many charged tracks? (in central region)

The updated models (as represented here by the Perugia 2012 and Monash 2013 tunes):Agree with the LHC min-bias and UE data at each energyAnd, non-trivially, they exhibit a more consistent energy scaling between energiesSo we may have some hope that we can use these models to do extrapolations

Central $\langle N_{ch} \rangle \rightarrow 100 \text{ TeV}$

Low x: Looking Forward

Higher NNPDF gluon at low $x \rightarrow$ more forward activity

How Much E_T? (in central detectors)

Note: I use INEL and include all charged+neutral This can be combined with σ_{INEL} to find the central E_T deposited e.g. by pileup

Log10(ECM[GeV])

ET density per unit eta-phi

Underlying Event

There are many UE variables. The most important is $\langle \Sigma p_T \rangle$ in the Transverse Region That tells you how much (transverse) energy the UE deposits under a jet. It is also more IR safe than $\langle N_{ch} \rangle$.

$UE \rightarrow 100 \text{ TeV}$

Test case: 100 GeV dijets

Measure ET in region transverse to the hardest track (in $|\eta| < 2.5$)

At $O(10^{-4} - 10^{-5})$ of total cross section, the beam remnant (BR) retains < 10% of beam energy. \rightarrow "Catastrophic Energy Loss" events. Intrinsic consequence of MPI. (Typically not caused by a single hard partonic scattering process; vanishing PDFs in the region x > 0.5).

→ "Total Inelastic Scattering"?: more than 90% of the energy scattered out of both beams, may occur at $\frac{3}{6}$ level of 10^{-10^4} – 10^{-8} of the cross section → 10 - 1000 pb. Extremely interesting part of hadron-hadron collision physics, far from single-interaction limit. Triggers for this class of events are presumably non-trivial.

(Event Structure: Strangeness)

Strangeness (& baryons): much recent debate sparked by LHC measurements. Collectivity in pp? Especially at high multiplicity?

"Trivial part": 10% more strangeness in ee (nothing to do with collectiveness)

0.4

 dn_{Λ}/dy

pp

10

 dn_{Λ}/dp_{T}

UUU Gev

 γ^2 /N

<dn(Λ^0)/dlyl> (NSD)

CMS

Non-trivial part (still not understood!): pT spectra & baryon sources

See more control plots at <u>http://mcplots.cern.ch</u>

If you don't require precision better than 10%

And if you don't look at very exclusive event details (such as isolating specific regions of phase space or looking at specific identified particles)

Summary

Then I believe these guesses are reasonable

$\sigma_{\rm INEL}$	$\sigma_{\rm EL}$	
~ 80 mb	~ 22 mb	@ 13 TeV
~ 90 mb	$\sim 25 \text{ mb}$	@ 30 TeV
~ 105 mb	~ 32 mb	@ 100 TeV

Central $<N_{ch}>$ density (INEL>0) ~ 1.1 ± 0.1 / $\Delta\eta\Delta\phi$ @ 13 TeV ~ 1.33 ± 0.14 / $\Delta\eta\Delta\phi$ @ 30 TeV ~ 1.8 ± 0.4 / $\Delta\eta\Delta\phi$ @ 100 TeV

Central <E_T> density (INEL)

 $\sim 1.0 \pm 0.15~GeV$ / LyDp @ 13 TeV

- $\sim 1.3 \pm 0.2~GeV$ / LyDp @ 30 TeV
- $\sim 2.0 \pm 0.4~GeV$ / $\Delta\eta\Delta\phi$ @ 100 TeV

UE TRNS $\langle \Sigma p_T \rangle$ density (j100)

 $\sim 3.3 \pm 0.2 / \Delta \eta \Delta \phi$ @ 13 TeV

 $\sim 3.65 \pm 0.25 / \Delta \eta \Delta \phi$ @ 30 TeV

 $\sim 4.4 \pm 0.45$ / Lag dirac ($\Delta\eta\Delta\phi$) 100 TeV

For tuning, Perugia 2012 (PY6) → Monash 2013 (PY8)

Diffraction could still use more dedicated pheno / tuning studies Baryon and strangeness spectra in pp still not well understood \rightarrow color reconnections? Forward region highly sensitive to PDF choice \rightarrow what do low-x PDFs mean?

(Multiplicities with p_T cuts)

Indication from LHC is that current PYTHIA models exhibit a slightly too hard pT spectrum.

Rates of very soft particles may be underpredicted. Very hard particles may be overpredicted

