Event Generator Physics

Peter Skands (CERN Theoretical Physics Dept)

Terascale Monte Carlo School
DESY, Hamburg - March 2014
Lectures 1+2: QCD \& MC

Scattering Experiments

LHC detector Cosmic-Ray detector Neutrino detector
X-ray telescope

\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

Scattering Experiments

LHC detector

X-ray telescope

\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

In particle physics:

Integrate over all quantum histories
(+ interferences)

Scattering Experiments

LHC detector Cosmic-Ray detector Neutrino detector
X-ray telescope

\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

Complicated integrands?
\rightarrow Numerical approaches
High-dimensional phase spaces?
\rightarrow Monte Carlo (+ interferences)

Scattering Experiments

LHC detector Cosmic-Ray detector Neutrino detector
X-ray telescope

\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

In particle physics:
Integrate over all quantum histories
(+ interferences)

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

QCD Recap

More than just a perturbative expansion in α_{s}

Emergent phenomena

Jets (the QCD fractal) \longleftrightarrow amplitude structures (in phase space) \longleftrightarrow fundamental quantum field theory. Precision jet (structure) studies.

Strings (strong gluon fields) \longleftrightarrow quantum-classical correspondence. String physics. Dynamics of hadronization phase transition.

Hadrons (incl excited states) \longleftrightarrow Spectroscopy, lattice QCD, (rare) decays, mixing, exotic states (e.g $\Omega_{\text {ccc }}$, hadron molecules, ...), light nuclei

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Quark fields

$$
\psi_{q}^{j}=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

$\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}$

Quark fields

$$
\psi_{q}^{j}=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

Covariant Derivative

$$
\begin{aligned}
& D_{\mu i j}=\delta_{i j} \partial_{\mu}-i g_{s} T_{i j}^{a} A_{\mu}^{a} \\
& \Rightarrow \text { Feynman rules }
\end{aligned}
$$

$\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}$

Quark fields

$$
\psi_{q}^{j}=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

Covariant Derivative

$$
\begin{aligned}
& D_{\mu i j}=\delta_{i j} \partial_{\mu}-\frac{i g_{s} T_{i j}^{a} A_{\mu}^{a}}{\partial^{a} a \in[1,8]} \\
& \Rightarrow \text { Feynman rules } i, j \in[1,3]
\end{aligned}
$$

Gell-Mann Matrices ($T^{a}=1 / 2 \lambda^{a}$)
$\lambda^{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
$\lambda^{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right), \lambda^{6}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}}\end{array}\right)$

Interactions in Color Space

Quark-Gluon interactions

Interactions in Color Space

Color Factors
All QCD processes have a "color factor". It counts the enhancement from the sum over colors.
(or suppression if colors have to match)
~ how many "color paths" we can take

Interactions in Color Space

Color Factors

All QCD processes have a "color factor". It counts the enhancement from the sum over colors.
(or suppression if colors have to match)
~ how many "color paths" we can take

Interactions in Color Space

Color Factors

All QCD processes have a "color factor". It counts the enhancement from the sum over colors.
(or suppression if colors have to match)
~ how many "color paths" we can take

Interactions in Color Space

Color Factors

All QCD processes have a "color factor". It counts the enhancement from the sum over colors.
(or suppression if colors have to match)
~ how many "color paths" we can take

Interactions in Color Space

Color Factors

All QCD processes have a "color factor". It counts the enhancement from the sum over colors.
(or suppression if colors have to match)
~ how many "color paths" we can take

Interactions in Color Space

Color Factors

All QCD processes have a "color factor". It counts the enhancement from the sum over colors.
(or suppression if colors have to match)
~ how many "color paths" we can take

Quick Guide to Color Algebra

Color factors squared produce traces

Quick Guide to Color Algebra

Color factors squared produce traces

Trace

Relation

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

Example Diagram

$$
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}
$$

Quick Guide to Color Algebra

Color factors squared produce traces

Trace

Relation

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

$$
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}
$$

$$
\sum_{C, D} f^{A C D} f^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3
$$

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d} \quad(\text { Fierz })
$$

Example Diagram

(from ESHEP lectures by G. Salam)

Quick Guide to Color Algebra

Color factors squared produce traces

Trace

Relation

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

$$
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}
$$

$$
\sum_{C, D} f^{A C D} f^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3
$$

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d} \quad(\text { Fierz })
$$

Example Diagram

The Gluon

Gluon-Gluon Interactions

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

The Gluon

Gluon-Gluon Interactions

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

The Gluon

Gluon-Gluon Interactions

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Gluon field strength tensor:

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{\delta} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

The Gluon

Gluon-Gluon Interactions

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Gluon field strength tensor:

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

Structure constants of $\mathrm{SU}(3)$:

$$
\begin{gathered}
f_{123}=1 \\
f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2} \\
f_{156}=f_{367}=-\frac{1}{2} \\
f_{458}=f_{678}=\frac{\sqrt{3}}{2}
\end{gathered}
$$

Antisymmetric in all indices All other $f_{i j k}=0$

The Strong Coupling

Bjorken scaling

To first approximation, QCD is SCALE INVARIANT (a.k.a. conformal)

A jet inside a jet inside a jet inside a jet...

If the strong coupling didn't "run", this would be absolutely true (e.g., $N=4$ Supersymmetric Yang-Mills)

As it is, $\alpha_{\text {s }}$ only runs slowly (logarithmically) \rightarrow can still gain insight from fractal analogy

Note: I use the terms "conformal" and "scale invariant" interchangeably
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance
But examples of scale-invariant field theories that are not conformal are rare (eg 6D noncritical self-dual string theory)

(some) Physics

~ 1934

(some) Physics

Charges Stopped or kicked

(some) Physics

Charges Stopped or kicked

Associated field
 (fluctuations) continues

(some) Physics

Charges Stopped or kicked

Radiation

Associated field
 (fluctuations) continues

(some) Physics

Charges Stopped or kicked

Radiation

The harder they stop, the harder the fluctations that continue to become radiation

Jets \approx Fractals

- Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure
- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

Jets \approx Fractals

- Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure
- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

$$
\begin{aligned}
& \text { Partons } \mathrm{ab} \rightarrow \quad \mathrm{P}(\mathrm{z})=\text { DGLAP splitting kernels, with } \mathrm{z}=\text { energy fraction }=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right) \\
& \text { "collinear": } \\
& \\
& \left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
\end{aligned}
$$

Jets \approx Fractals

- Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure
- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

Partons ab \rightarrow
$P(z)=$ DGLAP splitting kernels, with $z=$ energy fraction $=E_{a} /\left(E_{a}+E_{b}\right)$
"collinear":

$$
\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a| | b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

Gluon $j \rightarrow$ "soft":
Coherence \rightarrow Parton j really emitted by (i, k) "colour antenna"

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{\mathrm{s}}{ }^{2} \rightarrow 4 \pi \alpha_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)$
See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Jets \approx Fractals

- Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure
- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

Partons ab \rightarrow
"collinear":

$$
\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

Gluon $j \rightarrow$ "soft":
Coherence \rightarrow Parton j really emitted by (i, k) "colour antenna"

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{\mathrm{s}}{ }^{2} \rightarrow 4 \pi \alpha_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)$
See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389
Can apply this many times
\rightarrow nested factorizations

Factorization: Separation of Scales

Factorization of Production and Decay:
= "Narrow-width approximation"
Valid up to corrections $\Gamma / \mathrm{m} \rightarrow$ breaks down for large Γ
More subtle when colour/charge flows through the diagram

Factorization of Long and Short Distances

Scale of fluctuations inside a hadron

$$
\sim \Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}
$$

Scale of hard process $>\Lambda_{\mathrm{QCD}}$
\rightarrow proton looks "frozen"
Instantaneous snapshot of longwavelength structure, independent of nature of hard process

Factorization 2: PDFs

Hadrons are composite, with time-dependent structure:
Partons within clouds of further partons, constantly emitted and absorbed

Factorization 2: PDFs

Hadrons are composite, with time-dependent structure:
Partons within clouds of further partons, constantly emitted and absorbed

For hadron to remain intact, virtualities $\mathrm{k}^{2}<\mathrm{Mh}^{2}$

High-virtuality
fluctuations suppresed by powers of

$$
\frac{\alpha_{s} M_{h}^{2}}{k^{2}}
$$

M_{h} : mass of hadron $\mathrm{u} \mathrm{k}^{2}$: virtuality of fluctuation

Factorization 2: PDFs

Hadrons are composite, with time-dependent structure:

Partons within clouds of further partons, constantly emitted and absorbed

For hadron to remain intact, virtualities $\mathrm{k}^{2}<\mathrm{Mh}^{2}$

High-virtuality
fluctuations suppresed by powers of $\frac{\alpha_{s} M_{h}^{2}}{k^{2}}$
M_{h} : mass of hadron u^{2} : virtuality of fluctuation
\rightarrow Lifetime of fluctuations $\sim 1 / M_{h}$
Hard incoming probe interacts over much shorter time scale ~ $1 / \mathrm{Q}$

On that timescale, partons \sim frozen
Hard scattering knows nothing of the target hadron apart from the fact that it contained the struck parton

Factorization Theorem

In DIS, there is a formal proof of factorization
(Collins, Soper, 1987)
Deep Inelastic Scattering
(DIS)
(By "deep", we mean $Q^{2} \gg M_{h^{2}}$)

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DIS)
(By "deep", we mean $Q^{2} \gg M_{h^{2}}$)

\rightarrow We really can write the cross section in
factorized form :

$$
\sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}}
$$

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DIS)
(By "deep", we mean $Q^{2} \gg M_{h^{2}}$)

\rightarrow We really can write the cross section in
factorized form :

$$
\sigma^{\ell h}=\sum_{i} \sum_{\substack{\text { Sum over } \\ \text { Initial (i) } \\ \text { and final (f) } \\ \text { parton flavors }}} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}}
$$

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DIS)
(By "deep", we mean $Q^{2} \gg M_{h^{2}}$)

\rightarrow We really can write the cross section in
factorized form :

$$
\begin{aligned}
\sigma^{\ell h}= & \sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}} \\
\begin{array}{c}
\text { Sum over } \\
\text { Initial (i) } \\
\text { and final (f) } \\
\text { parton flavors }
\end{array} & =\text { Final-state }
\end{aligned}
$$

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DIS)
(By "deep", we mean $Q^{2} \gg M_{h^{2}}$)

\rightarrow We really can write the cross section in
factorized form :

$$
\begin{aligned}
& \sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}} \\
& \text { Sum over } \quad \Phi_{f} \quad f_{i / h} \\
& \text { Initial (i) = Final-state }=\text { PDFs } \\
& \text { and final (f) phase space Assumption: } \\
& \text { parton flavors } \\
& \mathrm{Q}^{2}=\mathrm{QF}^{2}
\end{aligned}
$$

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DIS)
(By "deep", we mean $Q^{2} \gg M_{h^{2}}$)

\rightarrow We really can write the cross section in
factorized form :

$$
\begin{aligned}
\sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) & \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}} \\
\begin{array}{c}
\text { Sum over } \\
\text { Initial (i) } \\
\text { and final (f) } \\
\text { parton flavors }
\end{array} & \begin{array}{c}
\Phi_{f} \\
\text { phase space }
\end{array} \\
\text { phat-state } & f_{i / h}=\text { PDFs }
\end{aligned} \begin{gathered}
\text { Assumption: } \\
\text { Differential partonic } \\
\text { Hard-scattering } \\
\text { Matrix Element(s) }
\end{gathered}
$$

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DIS)
(By "deep", we mean $Q^{2} \gg M_{h^{2}}$)

Note: Beyond LO, f can be more than one parton
\rightarrow We really can write the cross section in
factorized form :

$$
\begin{aligned}
\sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) & \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}} \\
\begin{array}{c}
\text { Sum over } \\
\text { Initial (i) } \\
\text { and final (f) } \\
\text { parton flavors }
\end{array} & \begin{array}{c}
\Phi_{f} \\
\text { phase space }
\end{array} \\
f_{i / h} & \text { Assumption: }
\end{aligned} \begin{gathered}
\text { Differential partonic } \\
\text { Hard-scattering } \\
\text { Matrix Element(s) }
\end{gathered}
$$

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DT)
Surprise Question: What's the color factor for DIS?

Note: Beyond LO, f can be more than one parton
\rightarrow We really can write the cross section in
factorized form :

$$
\sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}}
$$

It's just another crossing

$$
e^{+} e^{-} \rightarrow \gamma^{*} / Z \rightarrow q \bar{q}
$$

(Hadronic Z Decay)

Time

Color Factor:
$\operatorname{Tr}\left[\delta_{i j}\right]=N_{C}$

$$
q \bar{q} \rightarrow \gamma^{*} / Z \rightarrow \ell^{+} \ell^{-}
$$

(Drell \& Yan, 1970)

Color Factor:
$\frac{1}{N_{C}^{2}} \operatorname{Tr}\left[\delta_{i j}\right]=\frac{1}{N_{C}}$
$\ell q \xrightarrow{\gamma^{*} / Z} \ell q$
(DIS)

Color Factor:
$\frac{1}{N_{C}} \operatorname{Tr}\left[\delta_{i j}\right]=1$

Factorization

Why is Fixed Order QCD not enough?

 : It requires all resolved scales >> Λ_{QCD} AND no large hierarchiesTrivially untrue for QCD
We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences
\rightarrow A Priori, no perturbatively calculable observables in hadron-hadron collisions

Factorization

Why is Fixed Order QCD not enough?

 : It requires all resolved scales >> Λ_{QCD} AND no large hierarchiesTrivially untrue for QCD
We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Factorization

Why is Fixed Order QCD not enough?

 : It requires all resolved scales >> @ QCD AND no large hierarchiesTrivially untrue for QCD
We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed pQCD: All resolved scales >> ^ocD AND X Infrared Safe
${ }^{*}$) $\mathrm{pQCD}=$ perturbative QCD
P. Skands Event Generator Physics Lecture 2

Terascale Monte Carlo School DESY Hamburg

March 2014

Recall: Scattering Experiments

LHC detector Cosmic-Ray detector Neutrino detector
X-ray telescope

\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

Complicated integrands?
\rightarrow Numerical approaches
High-dimensional phase spaces?
\rightarrow Monte Carlo (+ interferences)

Recall: Scattering Experiments

LHC detector Cosmic-Ray detector Neutrino detector
X-ray telescope

\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

In particle physics:
Integrate over all quantum histories
(+ interferences)

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

Why Numerical?

Part of $Z \rightarrow 4$ jets ...

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-gluon-gluon-antiquark at leading and subleading colour, A_{4}^{0} and \tilde{A}_{4}^{0} and quark-antiquark-quark-antiquark for non-identical quark flavours B_{4}^{0} as well as the identical-flavour-only contribution C_{4}^{0}. The quark-antiquark-quark-antiquark final state with identical quark flavours is thus described by the sum of antennae for non-identical flavour and identical-flavour-only. The antennae for the $q g g \bar{q}$ final state are:

$$
\begin{align*}
A_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & a_{4}^{0}(1,3,4,2)+a_{4}^{0}(2,4,3,1) \tag{5.27}\\
\tilde{A}_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & \tilde{a}_{4}^{0}(1,3,4,2)+\tilde{a}_{4}^{0}(2,4,3,1)+\tilde{a}_{4}^{0}(1,4,3,2)+\tilde{a}_{4}^{0}(2,3,4,1), \\
a_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{2 s_{13} s_{24} s_{34}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+s_{14}^{2}+s_{23}^{2}\right]\right. \\
& +\frac{1}{2 s_{13} s_{24} s_{134} s_{234}}\left[3 s_{12} s_{34}^{2}-4 s_{12}^{2} s_{34}+2 s_{12}^{3}-s_{34}^{3}\right] \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right] \\
& +\frac{3}{2 s_{13} s_{24}}\left[2 s_{12}+s_{14}+s_{23}\right]+\frac{1}{s_{13} s_{34}}\left[4 s_{12}+3 s_{23}+2 s_{24}\right] \\
& +\frac{1}{s_{13} s_{134}^{2}}\left[s_{12} s_{34}+s_{23} s_{34}+s_{24} s_{34}\right] \\
& +\frac{1}{s_{13} s_{134} s_{234}}\left[3 s_{12} s_{24}+6 s_{12} s_{34}-4 s_{12}^{2}-3 s_{24} s_{34}-s_{24}^{2}-3 s_{34}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}}\left[-6 s_{12}-3 s_{23}-s_{24}+2 s_{34}\right] \\
& +\frac{1}{s_{24} s_{34} s_{134}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+2 s_{14} s_{23}+s_{14}^{2}+s_{23}^{2}\right] \\
& +\frac{1}{s_{24} s_{134}}\left[-4 s_{12}-s_{14}-s_{23}+s_{34}\right]+\frac{1}{s_{34}^{2}}\left[s_{12}+2 s_{13}-2 s_{14}-s_{34}\right] \\
& +\frac{1}{s_{34}^{2} s_{134}^{2}}\left[2 s_{12} s_{14}^{2}+2 s_{14}^{2} s_{23}+2 s_{14}^{2} s_{24}\right]-\frac{2 s_{12}^{2} s_{14} s_{24}}{s_{34}^{2} s_{134} s_{234}} \\
& +\frac{1}{s_{34}^{2} s_{134}}\left[-2 s_{12} s_{14}-4 s_{14} s_{24}+2 s_{14}^{2}\right] \\
& +\frac{1}{s_{34} s_{134} s_{234}}\left[-2 s_{12} s_{14}-4 s_{12}^{2}+2 s_{14} s_{24}-s_{14}^{2}-s_{24}^{2}\right] \\
& +\frac{1}{s_{34} s_{134}}\left[-8 s_{12}-2 s_{23}-2 s_{24}\right]+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{3}{2 s_{134} s_{234}}\left[2 s_{12}+s_{14}-s_{24}-s_{34}\right]+\frac{1}{2 s_{134}}+\mathcal{O}(\epsilon)\right\}
\end{align*}
$$

$$
\begin{align*}
\tilde{a}_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{s_{13} s_{24} s_{134} s_{234}}\left[\frac{3}{2} s_{12} s_{34}^{2}-2 s_{12}^{2} s_{34}+s_{12}^{3}-\frac{1}{2} s_{34}^{3}\right]\right. \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right] \\
& +\frac{s_{12}^{3}}{s_{13} s_{24}\left(s_{13}+s_{23}\right)\left(s_{14}+s_{24}\right)}+\frac{1}{s_{13} s_{24}\left(s_{13}+s_{23}\right)}\left[\frac{1}{2} s_{12} s_{14}+s_{12}^{2}\right] \\
& +\frac{1}{s_{13} s_{24}\left(s_{14}+s_{24}\right)}\left[\frac{1}{2} s_{12} s_{23}+s_{12}^{2}\right]+\frac{1}{s_{13} s_{24}}\left[3 s_{12}+\frac{3}{2} s_{14}+\frac{3}{2} s_{23}\right] \\
& +\frac{1}{s_{13} s_{134}^{2}}\left[s_{12} s_{34}+s_{23} s_{34}+s_{24} s_{34}\right]+\frac{2 s_{12}^{3}}{s_{13} s_{134} s_{234}\left(s_{13}+s_{23}\right)} \\
& +\frac{1}{s_{13} s_{134} s_{234}}\left[3 s_{12} s_{34}-s_{24} s_{34}-2 s_{34}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}\left(s_{13}+s_{23}\right)}\left[s_{12} s_{24}+s_{12} s_{34}+2 s_{12}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}}\left[-s_{23}-s_{24}+2 s_{34}\right]+\frac{1}{s_{13} s_{234}\left(s_{13}+s_{23}\right)}\left[s_{12} s_{14}+s_{12} s_{34}+2 s_{12}^{2}\right] \\
& +\frac{1}{s_{13} s_{234}}\left[-2 s_{12}-2 s_{14}+s_{24}+2 s_{34}\right] \\
& +\frac{2 s_{12}^{3}}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)} \\
& +\frac{1}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{24}+2 s_{12}^{2}\right] \\
& +\frac{1}{s_{13}\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{23}+2 s_{12}^{2}\right] \\
& +\frac{2 s_{12}}{s_{13}\left(s_{13}+s_{14}\right)}-\frac{2}{s_{13}}+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{1}{s_{134} s_{234}}\left[s_{12}-s_{34}\right]+\frac{1}{s_{134}}+\mathcal{O}(\epsilon)\right\} . \tag{5.30}
\end{align*}
$$

Why Numerical?

Part of $Z \rightarrow 4$ jets

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-gluon-gluon-antiquark at leading and subleading colour, A_{4}^{0} and \tilde{A}_{4}^{0} and quark-antiquark-quark-antiquark for non-identical quark flavours B_{4}^{0} as well as the identical-flavour-only contribution C_{4}^{0}. The quark-antiquark-quark-antiquark final state with identical quark flavours is thus described by the sum of antennae for non-identical flavour and identical-flavour-only. The antennae for the $q g g \bar{q}$ final state are:

$$
\begin{align*}
A_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & a_{4}^{0}(1,3,4,2)+a_{4}^{0}(2,4,3,1) \tag{5.27}\\
\tilde{A}_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & \tilde{a}_{4}^{0}(1,3,4,2)+\tilde{a}_{4}^{0}(2,4,3,1)+\tilde{a}_{4}^{0}(1,4,3,2)+\tilde{a}_{4}^{0}(2,3,4,1), \\
a_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{2 s_{13} s_{24} s_{34}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+s_{14}^{2}+s_{23}^{2}\right]\right. \\
& +\frac{1}{2 s_{13} s_{24} s_{134} s_{234}}\left[3 s_{12} s_{34}^{2}-4 s_{12}^{2} s_{34}+2 s_{12}^{3}-s_{34}^{3}\right] \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right] \\
& +\frac{3}{2 s_{13} s_{24}}\left[2 s_{12}+s_{14}+s_{23}\right]+\frac{1}{s_{13} s_{34}}\left[4 s_{12}+3 s_{23}+2 s_{24}\right] \\
& +\frac{1}{s_{13} s_{134}^{2}}\left[s_{12} s_{34}+s_{23} s_{34}+s_{24} s_{34}\right] \\
& +\frac{1}{s_{13} s_{134} s_{234}}\left[3 s_{12} s_{24}+6 s_{12} s_{34}-4 s_{12}^{2}-3 s_{24} s_{34}-s_{24}^{2}-3 s_{34}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}}\left[-6 s_{12}-3 s_{23}-s_{24}+2 s_{34}\right] \\
& +\frac{1}{s_{24} s_{34} s_{134}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+2 s_{14} s_{23}+s_{14}^{2}+s_{23}^{2}\right] \\
& +\frac{1}{s_{24} s_{134}}\left[-4 s_{12}-s_{14}-s_{23}+s_{34}\right]+\frac{1}{s_{34}^{2}}\left[s_{12}+2 s_{13}-2 s_{14}-s_{34}\right] \\
& +\frac{1}{s_{34}^{2} s_{134}^{2}}\left[2 s_{12} s_{14}^{2}+2 s_{14}^{2} s_{23}+2 s_{14}^{2} s_{24}\right]-\frac{2 s_{12} s_{14} s_{24}}{s_{34}^{2} s_{134} s_{234}} \\
& +\frac{1}{s_{34}^{2} s_{134}}\left[-2 s_{12} s_{14}-4 s_{14} s_{24}+2 s_{14}^{2}\right] \\
& +\frac{1}{s_{34} s_{134} s_{234}}\left[-2 s_{12} s_{14}-4 s_{12}^{2}+2 s_{14} s_{24}-s_{14}^{2}-s_{24}^{2}\right] \\
& +\frac{1}{s_{34} s_{134}}\left[-8 s_{12}-2 s_{23}-2 s_{24}\right]+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{3}{2 s_{134} s_{234}}\left[2 s_{12}+s_{14}-s_{24}-s_{34}\right]+\frac{1}{2 s_{134}}+\mathcal{O}(\epsilon)\right\}
\end{align*}
$$

$$
\begin{aligned}
\tilde{a}_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{s_{13} s_{24} s_{134} s_{234}}\left[\frac{3}{2} s_{12} s_{34}^{2}-2 s_{12}^{2} s_{34}+s_{12}^{3}-\frac{1}{2} s_{34}^{3}\right]\right. \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right]
\end{aligned}
$$

This is one of the simplest processes ... computed at lowest order in the theory.

$$
\begin{align*}
& \quad s_{13} s_{134} s_{234} \\
& +\frac{1}{s_{13} s_{134}\left(s_{13}+s_{23}\right)}\left[s_{12} s_{24}+s_{12} s_{34}+2 s_{12}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}}\left[-s_{23}-s_{24}+2 s_{34}\right]+\frac{1}{s_{13} s_{234}\left(s_{13}+s_{23}\right)}\left[s_{12} s_{14}+s_{12} s_{34}+2 s_{12}^{2}\right] \\
& +\frac{1}{s_{13} s_{234}}\left[-2 s_{12}-2 s_{14}+s_{24}+2 s_{34}\right] \\
& +\frac{2 s_{12}^{3}}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)} \\
& +\frac{1}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{24}+2 s_{12}^{2}\right] \\
& +\frac{1}{s_{13}\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{23}+2 s_{12}^{2}\right] \\
& +\frac{2 s_{12}}{s_{13}\left(s_{13}+s_{14}\right)}-\frac{2}{s_{13}}+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{1}{s_{134} s_{234}}\left[s_{12}-s_{34}\right]+\frac{1}{s_{134}}+\mathcal{O}(\epsilon)\right\} \tag{5.30}
\end{align*}
$$

Why Numerical?

Part of $Z \rightarrow 4$ jets

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-gluon-gluon-antiquark at leading and subleading colour, A_{4}^{0} and \tilde{A}_{4}^{0} and quark-antiquark-quark-antiquark for non-identical quark flavours B_{4}^{0} as well as the identical-flavour-only contribution C_{4}^{0}. The quark-antiquark-quark-antiquark final state with identical quark flavours is thus described by the sum of antennae for non-identical flavour and identical-flavour-only. The antennae for the $q g g \bar{q}$ final state are:

$$
\begin{align*}
A_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & a_{4}^{0}(1,3,4,2)+a_{4}^{0}(2,4,3,1) \tag{5.27}\\
\tilde{A}_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & \tilde{a}_{4}^{0}(1,3,4,2)+\tilde{a}_{4}^{0}(2,4,3,1)+\tilde{a}_{4}^{0}(1,4,3,2)+\tilde{a}_{4}^{0}(2,3,4,1), \\
a_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{2 s_{13} s_{24} s_{34}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+s_{14}^{2}+s_{23}^{2}\right]\right. \\
& +\frac{1}{2 s_{13} s_{24} s_{134} s_{234}}\left[3 s_{12} s_{34}^{2}-4 s_{12}^{2} s_{34}+2 s_{12}^{3}-s_{34}^{3}\right] \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right] \\
& +\frac{3}{2 s_{13} s_{24}}\left[2 s_{12}+s_{14}+s_{23}\right]+\frac{1}{s_{13} s_{34}}\left[4 s_{12}+3 s_{23}+2 s_{24}\right] \\
& +\frac{1}{s_{13} s_{134}^{2}}\left[s_{12} s_{34}+s_{23} s_{34}+s_{24} s_{34}\right] \\
& +\frac{1}{s_{13} s_{134} s_{234}}\left[3 s_{12} s_{24}+6 s_{12} s_{34}-4 s_{12}^{2}-3 s_{24} s_{34}-s_{24}^{2}-3 s_{34}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}}\left[-6 s_{12}-3 s_{23}-s_{24}+2 s_{34}\right] \\
& +\frac{1}{s_{24} s_{34} s_{134}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+2 s_{14} s_{23}+s_{14}^{2}+s_{23}^{2}\right] \\
& +\frac{1}{s_{24} s_{134}}\left[-4 s_{12}-s_{14}-s_{23}+s_{34}\right]+\frac{1}{s_{34}^{2}}\left[s_{12}+2 s_{13}-2 s_{14}-s_{34}\right] \\
& +\frac{1}{s_{34}^{2} s_{134}^{2}}\left[2 s_{12} s_{14}^{2}+2 s_{14}^{2} s_{23}+2 s_{14}^{2} s_{24}\right]-\frac{2 s_{12}^{2} s_{14} s_{24}}{s_{34}^{2} s_{134} s_{234}} \\
& +\frac{1}{s_{34}^{2} s_{134}}\left[-2 s_{12} s_{14}-4 s_{14} s_{24}+2 s_{14}^{2}\right] \\
& +\frac{1}{s_{34} s_{134} s_{234}}\left[-2 s_{12} s_{14}-4 s_{12}^{2}+2 s_{14} s_{24}-s_{14}^{2}-s_{24}^{2}\right] \\
& +\frac{1}{s_{34} s_{134}}\left[-8 s_{12}-2 s_{23}-2 s_{24}\right]+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{3}{2 s_{134} s_{234}}\left[2 s_{12}+s_{14}-s_{24}-s_{34}\right]+\frac{1}{2 s_{134}}+\mathcal{O}(\epsilon)\right\}
\end{align*}
$$

$$
\begin{aligned}
\tilde{a}_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{s_{13} s_{24} s_{134} s_{234}}\left[\frac{3}{2} s_{12} s_{34}^{2}-2 s_{12}^{2} s_{34}+s_{12}^{3}-\frac{1}{2} s_{34}^{3}\right]\right. \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right]
\end{aligned}
$$

This is one of the simplest processes ... computed at lowest order in the theory.

$$
+\frac{s_{13} s_{134} s_{234}}{s_{13} s_{134}\left(s_{13}+s_{23}\right)}\left[s_{12} s_{24}+s_{12} s_{34}+2 s_{12}^{2}\right]
$$

Now compute and add the quantum corrections

$$
\begin{aligned}
& +\frac{14}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)} \\
& +\frac{1}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{24}+2 s_{12}^{2}\right] \\
& +\frac{1}{s_{13}\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{23}+2 s_{12}^{2}\right] \\
& +\frac{2 s_{12}}{s_{13}\left(s_{13}+s_{14}\right)}-\frac{2}{s_{13}}+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{1}{s_{134} s_{234}}\left[s_{12}-s_{34}\right]+\frac{1}{s_{134}}+\mathcal{O}(\epsilon)\right\}
\end{aligned}
$$

Why Numerical?

Part of $Z \rightarrow 4$ jets

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-gluon-gluon-antiquark at leading and subleading colour, A_{4}^{0} and \tilde{A}_{4}^{0} and quark-antiquark-quark-antiquark for non-identical quark flavours B_{4}^{0} as well as the identical-flavour-only contribution C_{4}^{0}. The quark-antiquark-quark-antiquark final state with identical quark flavours is thus described by the sum of antennae for non-identical flavour and identical-flavour-only. The antennae for the $q g g \bar{q}$ final state are:

$$
\begin{align*}
A_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & a_{4}^{0}(1,3,4,2)+a_{4}^{0}(2,4,3,1) \tag{5.27}\\
\tilde{A}_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & \tilde{a}_{4}^{0}(1,3,4,2)+\tilde{a}_{4}^{0}(2,4,3,1)+\tilde{a}_{4}^{0}(1,4,3,2)+\tilde{a}_{4}^{0}(2,3,4,1), \\
a_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{2 s_{13} s_{24} s_{34}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+s_{14}^{2}+s_{23}^{2}\right]\right. \\
& +\frac{1}{2 s_{13} s_{24} s_{134} s_{234}}\left[3 s_{12} s_{34}^{2}-4 s_{12}^{2} s_{34}+2 s_{12}^{3}-s_{34}^{3}\right] \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right] \\
& +\frac{3}{2 s_{13} s_{24}}\left[2 s_{12}+s_{14}+s_{23}\right]+\frac{1}{s_{13} s_{34}}\left[4 s_{12}+3 s_{23}+2 s_{24}\right] \\
& +\frac{1}{s_{13} s_{134}^{2}}\left[s_{12} s_{34}+s_{23} s_{34}+s_{24} s_{34}\right] \\
& +\frac{1}{s_{13} s_{134} s_{234}}\left[3 s_{12} s_{24}+6 s_{12} s_{34}-4 s_{12}^{2}-3 s_{24} s_{34}-s_{24}^{2}-3 s_{34}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}}\left[-6 s_{12}-3 s_{23}-s_{24}+2 s_{34}\right] \\
& +\frac{1}{s_{24} s_{34} s_{134}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+2 s_{14} s_{23}+s_{14}^{2}+s_{23}^{2}\right] \\
& +\frac{1}{s_{24} s_{134}}\left[-4 s_{12}-s_{14}-s_{23}+s_{34}\right]+\frac{1}{s_{34}^{2}}\left[s_{12}+2 s_{13}-2 s_{14}-s_{34}\right] \\
& +\frac{1}{s_{34}^{2} s_{134}^{2}}\left[2 s_{12} s_{14}^{2}+2 s_{14}^{2} s_{23}+2 s_{14}^{2} s_{24}\right]-\frac{2 s_{12}^{2} s_{14} s_{24}}{s_{34}^{2} s_{134} s_{234}} \\
& +\frac{1}{s_{34}^{2} s_{134}}\left[-2 s_{12} s_{14}-4 s_{14} s_{24}+2 s_{14}^{2}\right] \\
& +\frac{1}{s_{34} s_{134} s_{234}}\left[-2 s_{12} s_{14}-4 s_{12}^{2}+2 s_{14} s_{24}-s_{14}^{2}-s_{24}^{2}\right] \\
& +\frac{1}{s_{34} s_{134}}\left[-8 s_{12}-2 s_{23}-2 s_{24}\right]+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{3}{2 s_{134} s_{234}}\left[2 s_{12}+s_{14}-s_{24}-s_{34}\right]+\frac{1}{2 s_{134}}+\mathcal{O}(\epsilon)\right\}
\end{align*}
$$

$\tilde{a}_{4}^{0}(1,3,4,2)=\frac{1}{s_{1234}}\left\{\frac{1}{s_{13} s_{24} s_{134} s_{234}}\left[\frac{3}{2} s_{12} s_{34}^{2}-2 s_{12}^{2} s_{34}+s_{12}^{3}-\frac{1}{2} s_{34}^{3}\right]\right.$
$+\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right]$
This is one of the simplest processes ... computed at lowest order in the theory.

$$
\left.\begin{array}{rl}
s_{13} s_{134} s_{234} \\
s_{13} s_{134}\left(s_{13}+s_{23}\right)
\end{array} s_{12} s_{24}+s_{12} s_{34}+2 s_{12}^{2}\right]
$$

Now compute and add the quantum corrections

$$
\begin{aligned}
& +\frac{1}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)} \\
& +\frac{1}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{24}+2 s_{12}^{2}\right]
\end{aligned}
$$

Then maybe worry about simulating the detector too ...

Riemann Sums

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)
$$

Numerical Integration in 1D

Midpoint (rectangular) Rule:

Fixed-Grid n-point
Quadrature Rules

Divide into N "bins" of size Δ
Approximate $f(x) \approx$ constant in each bin Sum over all rectangles inside your region

Numerical Integration in 1D

Trapezoidal Rule:

Fixed-Grid n-point
Quadrature Rules

Approximate $\mathrm{f}(\mathrm{x}) \approx$ linear in each bin Sum over all trapeziums inside your region

Numerical Integration in 1D

Simpson's Rule:

Fixed-Grid n-point
Quadrature Rules

Approximate $f(x) \approx$ quadratic in each bin Sum over all "Simpsons" inside your region

3 function evaluations per bin

... and so on for higher n-point rules

Convergence Rate

The most important question: How long do I have to wait?

How many evaluations do I need to calculate for a given precision?

Uncertainty (after n evaluations)	$n_{\text {neval }} /$ bin	Approx Conv. Rate (in 1D)
Trapezoidal Rule (2-point)	2	I / N^{2}
Simpson's Rule (3-point)	3	I/N N^{4}
\ldots m-point (Gauss quadrature)	m	I/N2m-I
See, e.g., Numerical		
Recipes		

Higher Dimensions

Fixed-Grid (Product) Rules scale exponentially with D
m-point rule in 1 dimension

$\rightarrow \mathrm{m}$ function evaluations per bin
... in 2 dimensions

$\rightarrow \mathrm{m}^{2}$ evaluations per bin

Higher Dimensions

m-point rule in 1 dimension

\rightarrow m function evaluations per bin
... in 2 dimensions

E.g., to evaluate a 12 -point rule in 10 dimensions, need 1000 billion evaluations per bin

Convergence Rate

+ Convergence is slower in higher Dimensions!
\rightarrow More points for less precision

Uncertainty (after n evaluations)	$\mathrm{n}_{\text {eval }} /$ bin	Approx Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2^{D}	$\mathrm{I} / \mathrm{n}^{2 / \mathrm{D}}$
Simpson's Rule (3-point)	3^{D}	$\mathrm{I} / \mathrm{n}^{4 / \mathrm{D}}$

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

Calculus: $\{A\}$ converges to B if an n exists for which $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$

Monte Carlo: $\{A\}$ converges to B if n exists for which the probability for $\left|\mathrm{A}_{i>n}-\mathrm{B}\right|<\varepsilon$, for any $\varepsilon>0$, is $>\mathrm{P}$, for any $\mathrm{P}[0<\mathrm{P}<1]$

告
 P

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

"This risk, that convergence is only given with a certain probability, is inherent in Monte Carlo calculations and is the reason why this technique was named after the world's most famous gambling casino. Indeed, the name is doubly appropriate because the style of gambling in the Monte Carlo casino, not to be confused with the noisy and tasteless gambling houses of Las Vegas and Reno, is serious and sophisticated."
F. James, "Monte Carlo theory and practice", Rept. Prog. Phys. 43 (1980) 1145

Convergence

MC convergence is Stochastic!

$$
\frac{1}{\sqrt{n}} \text { in any dimension }
$$

Uncertainty (after \boldsymbol{n} function evaluations)	$\mathrm{n}_{\text {eval }} /$ bin	Approx Conv. Rate (in ID)	Approx Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2^{D}	$\mathrm{I} / \mathrm{n}^{2}$	$\mathrm{I} / \mathrm{n}^{2 / \mathrm{D}}$
Simpson's Rule (3-point)	3^{D}	$\mathrm{I} / \mathrm{n}^{4}$	$\mathrm{I} / \mathrm{n}^{4 / \mathrm{D}}$
\ldots m-point (Gauss rule)	m^{D}	$\mathrm{I} / \mathrm{n}^{2 \mathrm{~m}-1}$	$\mathrm{I} / \mathrm{n}^{(2 \mathrm{~m}-\mathrm{I}) / \mathrm{D}}$
Monte Carlo	I	$\mathrm{I} / \mathrm{n}^{1 / 2}$	$\mathrm{I} / \mathrm{n}^{1 / 2}$

+ many ways to optimize: stratification, adaptation, ...
+ gives "events" \rightarrow iterative solutions,
+ interfaces to detector simulation \& propagation codes

Random Numbers

(apologies, I did not have much time to adapt these slides)
You want: to know the area of this shape:

Random Numbers

(apologies, I did not have much time to adapt these slides)
You want: to know the area of this shape:

Random Numbers

(apologies, I did not have much time to adapt these slides)

You want: to know the area of this shape:

Random Numbers

(apologies, I did not have much time to adapt these slides)

You want: to know the area of this shape:

Random Numbers

(apologies, I did not have much time to adapt these slides)

You want: to know the area of this shape:

Random Numbers

(apologies, I did not have much time to adapt these slides)

You want: to know the area of this shape:

Random Numbers

(apologies, I did not have much time to adapt these slides)
You want: to know the area of this shape:

Random Numbers

I will not tell you how to write a Random-number generator (interesting topic \& history in its own right)

Instead, I assume that you can write a computer code and link to a random-number generator, from a library
E.g., ROOT includes one that you can use if you like.

PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under "Random Numbers":

Random numbers R uniformly distributed in $0<R<1$ are obtained with Pythia8: Rndm::flat();

+ Other methods for exp, x*exp, 1D Gauss, 2D Gauss.

Example: Number of Terascale school students who will get hit by a car this week

Complicated Function:

Time-dependent

Traffic density during day, week-days vs week-ends
(i.e., non-trivial time evolution of system)

No two students are the same
Need to compute probability for each and sum (simulates having several distinct types of "evolvers")
Multiple outcomes:
Hit \rightarrow keep walking, or go to hospital?
Multiple hits = Product of single hits, or more complicated?

Monte Carlo Approach

Approximate Traffic

Simple overestimate:
highest recorded density of most careless drivers, driving at highest recorded speed

Approximate Student
by most completely reckless and accident-prone student (wandering the streets lost in thought after these lectures ...)

This extreme guess will be the equivalent of our simple overestimate from before:

Hit Generator

Off we go...

Throw random accidents according to:

$n_{\text {stud }}$
$\sum \alpha_{i}(x, t) \rho_{i}(x, t) \rho_{c}(x, t)$
$i=1$
Student-Car Density of Density of
Sum over
students

Hit Generator

Off we go...

Throw random accidents according to:

$$
\mathrm{R}=\int_{t_{0}}^{t_{e}} \mathrm{~d} t \int_{x} \mathrm{~d} x \sum_{i=1}^{n_{\text {stud }}} \alpha_{i}(x, t) \rho_{i}(x, t) \rho_{c}(x, t)
$$

t_{e} : time
of accident

Hit Generator

Off we go...

Throw random accidents according to:

Hit Generator

Off we go...

Throw random accidents according to:
t_{e} : time
Sum over
of accident

Simple Overestimate

Hit Generator

Off we go...

Throw random accidents according to:

t_{c} : time
 of accident

Sum over
students
$\mathrm{R}=\left(t_{e}-t_{0}\right) \Delta x$
$\alpha_{\text {max }} n_{\text {stud }} \rho_{\text {cmax }}$

Hit rate for most accident-prone student

Rush-hour density of cars

Too
 Difficult

Simple Overestimate

Hit Generator

Off we go...

Throw random accidents according to:

t_{e} : time of accident

students
$\mathrm{R}=\left(t_{e}-t_{0}\right) \Delta x$ $\alpha_{\text {max }} n_{\text {stud }} \rho_{\text {cmax }}$

Hit rate for most accident-prone student

Rush-hour density of cars

Simple Overestimate
(Also generate trial x_{e}, e.g., uniformly in circle around DESY) (Also generate trial i; a random student gets hit)

Hit Generator

Accept trial hit (i,x,t) with probability

$\operatorname{Prob}($ accept $)=\frac{\alpha_{i}(x, t) \rho_{i}(x, t) \rho_{c}(x, t)}{\alpha_{\max } n_{\text {stud }} \rho_{c \max }}$

Using the following:
ρ_{c} : actual density of cars at location x at time t ρ_{i} : actual density of student i at location x at time t α_{i} : The actual "hit rate" (OK, not really known, but can make one up)

Hit Generator

Accept trial hit (i,x,t) with probability

$$
\operatorname{Prob}(\text { accept })=\frac{\alpha_{i}(x, t) \rho_{i}(x, t) \rho_{c}(x, t)}{\alpha_{\max } n_{\mathrm{stud}} \rho_{c \max }}
$$

Using the following:
ρ_{c} : actual density of cars at location x at time t ρ_{i} : actual density of student i at location x at time t α_{i} : The actual "hit rate" (OK, not really known, but can make one up)
\rightarrow True number $=$ number of accepted hits (note: we didn't really treat multiple hits ... \rightarrow Markov Chain)

Importance Sampling

Peaked Functions

Peaked Functions

Peaked Functions

Precision on integral dominated by the points with $\mathrm{f} \approx \mathrm{f}_{\text {max }}$
(i.e., peak regions)
\rightarrow slow convergence if high, narrow peaks

Stratified Sampling

\rightarrow Make it twice as likely to throw points in the peak

Choose:

	$[0,1] \rightarrow$ Region A
	[1,2] \rightarrow Region B
	$[2,4] \rightarrow$ Region C
	$[4,5] \rightarrow$ Region
	$[5,6] \rightarrow$ Region

\rightarrow faster convergence for same number of function evaluations

Adaptive Sampling

\rightarrow Can even design algorithms to do this automatically as they run (not covered here)
\rightarrow Adaptive sampling

Importance Sampling

Functions: Breit-Wigner

\rightarrow or throw points according to some smooth peaked function for which you have, or can construct, a random number generator (here: Gauss)
E.g., VEGAS algorithm, by G.

Lepage

Why does this work?

Why does this work?

1) You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance)

Why does this work?

1) You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance)
2) Stratified sampling increases efficiency by combining fixed-grid methods with the MC method, with further gains from adaptation

Why does this work?

1) You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance)
2) Stratified sampling increases efficiency by combining fixed-grid methods with the MC method, with further gains from adaptation
3) Importance sampling:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} \frac{f(x)}{g(x)} \mathrm{d} G(x)
$$

Effectively does flat MC with changed integration variables
Fast convergence if

$$
f(x) / g(x) \approx 1
$$

The Veto Algorithm

How we do Monte Carlo

Take your system
Set of radioactive nuclei
Set of hard scattering processes
Set of resonances that are going to decay Set of particles coming into your detector

Set of cosmic photons traveling across the galaxy Set of molecules

How we do Monte Carlo

Take your system
Generate a "trial" (event/decay/interaction/...)
Not easy to generate random numbers distributed according to exactly the right distribution?
May have complicated dynamics, interactions ...
\rightarrow use a simpler "trial" distribution

How we do Monte Carlo

Take your system
Generate a "trial" (event/decay/interaction/...)
Not easy to generate random numbers distributed according to exactly the right distribution?
May have complicated dynamics, interactions ...
\rightarrow use a simpler "trial" distribution

Flat with some stratification
Or importance sample with simple overestimating function (for which you can generate random \#s)

How we do Monte Carlo

Take your system
Generate a "trial" (event/decay/interaction/...)
Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamics
$g(x)$ is the simple trial function
If accept: replace with new system state
If reject: keep previous system state

How we do Monte Carlo

Take your system
Generate a "trial" (event/decay/interaction/...)
Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamics
$g(x)$ is the simple trial function
If accept: replace with new system state If reject: keep previous system state

And keep goingt generate next trial ...

How we do Monte Carlo

TTake your system
Generate a "trial" (event/decay/interaction/...)
Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamics
$g(x)$ is the simple trial function
If accept: replace with new system state If reject: keep previous system state

And keep goingt generate next trial ...

How we do Monte Carlo

TTake your system
Generate a "trial" (event/decay/interaction/...)
Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamics
$g(x)$ is the simple trial function
If accept: replace with new system state If reject: keep previous system state

And keep goingt generate next trial ...

How we do Monte Carlo

TTake your system
Generate a "trial" (event/dec Accept trial with probability f(x $f(x)$ contains all the complicate $g(x)$ is the simple trial function If accept: replace with new sys If reject: keep previous system
no dependence on g result - only affec convergence rate

Sounds deceptively simple, but ...
with it, you can integrate
arbitrarily complicated functions (in particular chains of nested functions), over arbitrarily complicated regions, in arbitrarily many dimensions ...

And keep goingt generate next trial ...

Summary - Lecture 2

Quantum Scattering Problems are common to many areas of physics:
To compute expectation value of observable: integrate over phase space

Complicated functions \rightarrow Numerical Integration

High Dimensions \rightarrow Monte Carlo (stochastic) convergence is fastest + Additional power by stratification and/or importance sampling

Recommended Reading

> F. James
> Monte Carlo Theory and Practice Rept.Prog.Phys. 43 (1980) p.I 145
S. Weinzierl

Topical lectures given at the Research School Subatomic physics, Amsterdam, June 2000
Introduction to Monte Carlo Methods e-Print: hep-ph/0006269

P. Skands

Introduction to QCD (TASI 2012) arXiv: 1207.2389

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0$. I

Truncate at fixed order $=$ LO, NLO, \ldots

But beware the jet-within-a-jet-within-a-jet ...

Example:

SUSY pair production at 14 TeV , with $M_{\text {susy }} \approx 600 \mathrm{GeV}$

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0$. I

Truncate at fixed order $=$ LO, NLO, \ldots
But beware the jet-within-a-jet-within-a-jet ...

Example:

SUSY pair production at 14 TeV , with $M_{\text {susy }} \approx 600 \mathrm{GeV}$
LHC - sps 1a-m~600 GeV
Plehn, Rainwater, PS PLB645(2007)217

FIXED ORDER pQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive X+1 "jet"	$\rightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive X + 2 "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26

σ for $X+$ jets much larger than naive estimate

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0$. I

Truncate at fixed order $=$ LO, NLO, \ldots
But beware the jet-within-a-jet-within-a-jet ...

Example:

SUSY pair production at 14 TeV , with $\mathrm{Msusy}^{\approx} 600 \mathrm{GeV}$

LHC - spsla-m~600 GeV
Plehn, Rainwater, PS PLB645(2007)217

FIXED ORDER pQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{X + 1}$ "jet"	$\rightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive $\mathbf{X + 2}$ "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26

```
\sigma for X + jets much larger than naive estimate
```

$p_{T, j} \nmid 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

σ for 50 GeV jets \approx larger than total cross section \rightarrow not under control
(Computed with SUSY-MadGraph)

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0$. I

Truncate at fixed order $=$ LO, NLO, \ldots
But beware the jet-within-a-jet-within-a-jet ...

Example: 100 GeV can be "soft" at the LHC

SUSY pair production at 14 TeV , with $\mathrm{Msusy}^{\approx} 600 \mathrm{GeV}$

LHC - spsla-m~600 GeV
Plehn, Rainwater, PS PLB645(2007)217

FIXED ORDER pQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{x + 1}$ "jet"	$\rightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive $\mathbf{x}+\mathbf{2}$ "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26

```
\sigma for X + jets much larger than naive estimate
```

$p_{T, j} \nmid 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

σ for 50 GeV jets \approx larger than total cross section \rightarrow not under control
(Computed with SUSY-MadGraph)

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0$. I

Truncate at fixed order $=$ LO, NLO, \ldots
\rightarrow More on this in
But beware the jet-within-a-jet-within-a-jet ... lectures on Jets, Monte

Carlo, and Matching

Example: 100 GeV can be "soft" at the LHC

SUSY pair production at 14 TeV , with $M_{\text {susy }} \approx 600 \mathrm{GeV}$
LHC - spsla-m~600 GeV
Plehn, Rainwater, PS PLB645(2007)217

FIXED ORDER pQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{x + 1}$ "jet"	$\rightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive $\mathbf{x}+\mathbf{2}$ "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26

 naive estimate
σ for 50 GeV jets \approx larger than total cross section \rightarrow not under control \qquad

$p_{T, j} \nmid 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

(Computed with SUSY-MadGraph)

Scaling Violation

Real QCD isn't conformal
The coupling runs logarithmically with the energy scale

$$
Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{s}\right) \quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right)
$$

$$
b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi} \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}}
$$

Scaling Violation

Real QCD isn't conformal
The coupling runs logarithmically with the energy scale

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{s}\right) \quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right) \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi} \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}} \\
& \text { I-Loop } \beta \text { function coefficient } \quad \text { 2-Loop } \beta \text { function coefficient }
\end{aligned}
$$

Asymptotic freedom

 in the ultraviolet
Scaling Violation

Real QCD isn't conformal
The coupling runs logarithmically with the energy scale

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{s}\right) \quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right), \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi} \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}}
\end{aligned}
$$

I-Loop β function coefficient 2-Loop β function coefficient

$$
\mathrm{b}_{2}
$$

Asymptotic freedom

 in the ultraviolet
Confinement (IR slavery?) in the infrared

Asymptotic Freedom

"What this year's Laureates discovered was something that, at first sight, seemed completely contradictory. The interpretation of their mathematical result was that the closer the quarks are to each other, the weaker is the 'colour charge'. When the quarks are really close to each other, the force is so weak that they behave almost as free particles. This phenomenon is called 'asymptotic freedom'. The converse is true when the quarks move apart: the force becomes stronger when the distance increases."

Nobelprize.org
The Official Web Site of the Nobel Prize

The Nobel Prize in Physics 2004
David J. Gross, H. David Politzer, Frank Wilczek

Frank Wilczek

Asymptotic Freedom

"What this year's Laureates discovered was something that, at first sight, seemed completely contradictory. The interpretation of their mathematical result was that the closer the quarks are to each other, the weaker is the 'colour charge'. When the quarks are really close to

* each other, the forfore is so weak that they behave almost as free particles. This phenomenon is called 'asymptotic freedom'. The converse is true when the quarks move apart:
*2 the foreterial becomes stronger when the distance increases."

Nobelprize.org
The Official Web Site of the Nobel Prize

The Nobel Prize in Physics 2004
David J. Gross, H. David Politzer, Frank Wilczek

Frank Wilczek
H. David Politzer

David. Gross Physics 2004 was awarded jointly to David J. Gross
The Nobel Prize in Physics 2004 was awarded jointly to David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction".

Photos: Copyright © The Nobel Foundation

[^0]
Asymptotic Freedom

QED:

Vacuum polarization
\rightarrow Charge screening

QCD:

Quark Loops
\rightarrow Also charge screening

But only dominant if > 16 flavors!

Asymptotic Freedom

QED:

Vacuum polarization
\rightarrow Charge screening

QCD: $\quad b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}$
Gluon Loops
Dominate if ≤ 16 flavors

Spin-I \rightarrow Opposite Sign

UV and IR

At low scales

Coupling $\alpha_{s}(\mathrm{Q})$ actually runs rather fast with Q

Perturbative solution diverges at a scale Λ_{QCD} somewhere below

$$
\approx \mathrm{IGeV}
$$

So, to specify the strength of the strong force, we usually give the value of α_{s} at a unique reference scale that everyone agrees on: Mz

The Fundamental Parameter(s)

QCD has one fundamental parameter

$$
\alpha_{s}\left(m_{Z}\right)^{\mathrm{MS}} \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)}
$$

$\ldots+\mathrm{n}_{\mathrm{f}}$ and quark masses

The Fundamental Parameter(s)

QCD has one fundamental parameter

... and its sibling

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}} \stackrel{\text { depeends on } n \text { n.schemen, and fofloops) }}{\leftrightarrows} \Lambda \sim 200 \mathrm{MeV}
$$

$\ldots+\mathrm{n}_{\mathrm{f}}$ and quark masses

The Fundamental Parameter(s)

QCD has one fundamental parameter

$$
\alpha_{s}\left(m_{Z}\right)^{\mathrm{MS}} \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)}
$$

... and its sibling

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}} \stackrel{\text { (depends on } \mathrm{n} \text {, scheme, and \# of loops })}{\longleftrightarrow} \Lambda \sim 200 \mathrm{MeV}
$$

... And all its cousins

$\Lambda^{(3)} \Lambda^{(4)} \Lambda^{(5)} \Lambda_{C M W} \Lambda_{\text {FSR }} \Lambda_{\text {ISR }} \Lambda_{\text {MPI }}, \ldots$

$\ldots+n_{f}$ and quark masses

Uncalculated Orders

Naively $\mathbf{O}\left(\alpha_{s}\right)=$ True in $\mathrm{e}^{+} \mathrm{e}^{-}$!

Uncalculated Orders

Naively $\mathbf{O}\left(\boldsymbol{\alpha}_{\mathbf{s}}\right)=$ True in $\mathrm{e}^{+} \mathrm{e}^{-}$!

Generally larger in hadron collisions

Typical "K" factor in Pp $\left(=\sigma_{\text {NLO }} / \sigma_{\text {LO }}\right) \approx 1.5 \pm 0.5$
Why is this? Many pseudoscientific explanations

Uncalculated Orders

Naively $\mathbf{O}\left(\alpha_{s}\right)=$ True in $\mathrm{e}^{+} \mathrm{e}^{-}$!

$$
\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\left(\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right.}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Generally larger in hadron collisions

Typical "K" factor in $\mathrm{Pp}\left(=\sigma_{\text {NLO }} / \sigma_{\text {LO }}\right) \approx 1.5 \pm 0.5$
Why is this? Many pseudoscientific explanations
Explosion of \# of diagrams ($\mathrm{n}_{\text {Diagrams }} \approx \mathrm{n}!$)
New initial states contributing at higher orders (E.g., gq $\rightarrow \mathrm{Zq}$)
Inclusion of low-x (non-DGLAP) enhancements
Bad (high) scale choices at Lower Orders, ...

Theirs not to reason why // Theirs but to do and die

Changing the scale(s)

Why scale variation ~ uncertainty?

Scale dependence of calculated orders must be canceled by contribution from uncalculated ones (+ non-pert)

$$
\begin{aligned}
& \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)} \\
& b_{0}=\frac{11 N_{C}-2 n_{f}}{12 \pi}
\end{aligned}
$$

$\rightarrow \quad\left(\alpha_{s}\left(Q^{2}\right)-\alpha_{s}\left(Q^{2}\right)\right)|M|^{2}=\alpha_{s}^{2}\left(Q^{2}\right)|M|^{2}+\ldots$
\rightarrow Generates terms of higher order, but proportional to what you already have $\left(|\mathrm{M}|^{2}\right) \rightarrow$ a first naive* way to estimate uncertainty

[^1]
Dangers

Dangers

Complicated final states
Intrinsically Multi-Scale problems with Many powers of α_{s}

Dangers

Complicated final states
Intrinsically Multi-Scale problems with Many powers of α_{s}
E.g., $W+3$ jets in pp

$$
\alpha_{s}^{3}\left(m_{W}^{2}\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\sum_{i} p_{\perp i}^{2}\right)
$$

Dangers

Complicated final slakes

Intrinsically Multi-Scale problems with Many powers of α_{s}
E.g., $W+3$ jels in $p p$

$$
\alpha_{s}^{3}\left(m_{W}^{2}\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\sum_{i} p_{\perp i}^{2}\right)
$$

Global Scaling: jets don't care about m_{w}

$$
\alpha_{s}^{3}\left(\min \left[p_{\perp}^{2}\right]\right)<\alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(\max \left[p_{\perp}^{2}\right]\right)
$$

Dangers

Complicated final skakes

Intrinsically Multi-Scale problems with Many powers of α_{s}
E.g., $W+3$ jels in $p p$

$$
\alpha_{s}^{3}\left(m_{W}^{2}\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\sum_{i} p_{\perp i}^{2}\right)
$$

Global Scaling: jets don't care about m_{w}

$$
\alpha_{s}^{3}\left(\min \left[p_{\perp}^{2}\right]\right)<\alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(\max \left[p_{\perp}^{2}\right]\right)
$$

MC parton showers: "Local scaling"

$$
\alpha_{s}\left(p_{\perp 1}\right) \alpha_{s}\left(p_{\perp 2}\right) \alpha_{s}\left(p_{\perp 3}\right) \sim \alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle_{\text {geom }}\right)
$$

Dangers

Complicated final skates

Intrinsically Multi-Scale problems with Many powers of α_{s}
E.g., $W+3$ jels in $p p$

$$
\alpha_{s}^{3}\left(m_{W}^{2}\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\sum_{i} p_{\perp i}^{2}\right)
$$

Global Scaling: jets don't care about m_{w}

$$
{ }^{3} \alpha_{s}^{3}\left(\min \left[p_{\perp}^{2}\right]\right)<\alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle\right)^{4}<\alpha_{s}^{3}\left(\max \left[p_{\perp}^{2}\right]\right)_{5}
$$

MC parton showers: "Local scaling"

$$
\alpha_{s}\left(p_{\perp 1}\right) \alpha_{s}\left(p_{\perp 2}\right) \alpha_{s}\left(p_{\perp 3}\right) \sim \alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle_{\text {geom }}\right)
$$

Dangers

$$
\begin{aligned}
& P_{\perp 1}=50 \mathrm{GeV} \\
& P_{\perp 2}=50 \mathrm{GeV} \\
& P_{\perp 3}=50 \mathrm{GeV}
\end{aligned}
$$

Complicated final skakes

 Intrinsically Multi-Scale problems with Many powers of α_{s}E.g., $W+3$ jels in $p p$

$$
\alpha_{s}^{3}\left(m_{W}^{2}\right)<\alpha_{s}^{3}\left(m_{T}^{2}+\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\sum_{i} p_{\perp i}^{2}\right)
$$

Global Scaling: jets don't care about m_{W}

$$
{ }^{3} \alpha_{s}^{3}\left(\min \left[p_{\perp}^{2}\right]\right)<\alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle\right)^{4}<\alpha_{s}^{3}\left(\max \left[p_{\perp}^{2}\right]\right)
$$

MC parton showers: "Local scaling"

$$
\alpha_{s}\left(p_{\perp 1}\right) \alpha_{s}\left(p_{\perp 2}\right) \alpha_{s}\left(p_{\perp 3}\right) \sim \alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle_{\text {geom }}\right)
$$

Dangers

$$
\begin{aligned}
& p_{\perp 1}=500 \mathrm{GeV} \\
& P_{\perp 2}=100 \mathrm{GeV} \\
& P_{\perp 3}=30 \mathrm{GeV}
\end{aligned}
$$

Complicated final states Intrinsically Multi-Scale problems with Many powers of α_{s}

If you have multiple QCD scales
\rightarrow variation of μ_{R} by factor 2 in each direction not good enough! (nor is $\times 3$, nor $\times 4$)

Need to vary also functional dependence on each scale!

[^0]: ${ }^{* 1}$ The force still goes to ∞ as $r \rightarrow 0$
 (Coulomb potential), just less slowly
 *2 The potential grows linearly as $r \rightarrow \infty$, so the force actually becomes constant (even this is only true in "quenched" QCD. In real QCD, the force eventually vanishes for $r \gg \mid f m$)

[^1]: *warning: some theorists believe it is the only way ... but be agnostic! There are other things than scale dependence ...

