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Scattering Experiments
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In particle physics: 
Integrate over all quantum histories

(+ interferences)
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Predicted number of counts 
= integral over solid angle
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→ Integrate differential cross sections 
over specific phase-space regions

LHC detector
Cosmic-Ray detector

Neutrino detector
X-ray telescope

…

source

Lots of dimensions?
Complicated integrands?
→ Use Monte Carlo



P.  S k a n d s

General-Purpose Event Generators
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Improve lowest-order perturbation theory, 
by including the ‘most significant’ corrections

→ complete events (can evaluate any observable you want)

Calculate Everything ≈ solve QCD → requires compromise!

The Workhorses
PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String.
HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering.
SHERPA : Begun in 2000. Originated in “matching” of matrix elements to showers: CKKW-L.
+ MORE SPECIALIZED: ALPGEN, MADGRAPH, ARIADNE, VINCIA, WHIZARD, MC@NLO, POWHEG, … 

Reality is more complicated
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Divide and Conquer
Factorization → Split the problem into many (nested) pieces
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Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Hard Process & Decays: 
Use (N)LO matrix elements
→ Sets “hard” resolution scale for process: QMAX

ISR & FSR (Initial & Final-State Radiation): 
Altarelli-Parisi equations → differential evolution, dP/dQ2, as 
function of resolution scale; run from QMAX to ~ 1 GeV (More later) 

MPI (Multi-Parton Interactions)
Additional (soft) parton-parton interactions: LO matrix elements
→ Additional (soft) “Underlying-Event” activity (Not the topic for today)

Hadronization
Non-perturbative model of color-singlet parton systems → hadrons

+ Quantum mechanics → Probabilities → Random Numbers
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(PYTHIA)
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PYTHIA anno 1978
(then called JETSET)

LU TP 78-18
November, 1978

A Monte Carlo Program for Quark Jet 
Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is 
presented, that simulates the 
fragmentation of a fast parton into a 
jet of mesons. It uses an iterative 
scaling scheme and is compatible with 
the jet model of Field and Feynman.

Note: 
Field-Feynman was an early fragmentation model
Now superseded by the String (in PYTHIA) and 

Cluster (in HERWIG & SHERPA) models.
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LU TP 07-28 (CPC 178 (2008) 852)
October, 2007

A Brief Introduction to PYTHIA 8.1

T. Sjöstrand, S. Mrenna, P. Skands

The Pythia program is a standard tool 
for the generation of high-energy 
collisions, comprising a coherent set 
of physics models for the evolution 
from a few-body hard process to a 
complex multihadronic final state. It 
contains a library of hard processes 
and models for initial- and final-state 
parton showers, multiple parton-parton 
interactions, beam remnants, string 
fragmentation and particle decays. It 
also has a set of utilities and 
interfaces to external programs. […]

(PYTHIA)
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PYTHIA anno 2013
(now called PYTHIA 8)

~ 100,000 lines of C++

• Hard Processes (internal, inter-
faced, or via Les Houches events)

• BSM (internal or via interfaces)

• PDFs (internal or via interfaces)

• Showers (internal or inherited)

• Multiple parton interactions
• Beam Remnants
• String Fragmentation
• Decays (internal or via interfaces)

• Examples and Tutorial
• Online HTML / PHP Manual
• Utilities and interfaces to 

external programs 

What a modern MC generator has inside:



(some) Physics
Charges Stopped 

or kicked

Associated field 
(fluctuations) continues

RadiationRadiation
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The harder they stop, the harder the 
fluctations that continue to become radiation

a.k.a.
Bremsstrahlung

Synchrotron Radiation

cf. equivalent-photon 
approximation

Weiszäcker, Williams 
~ 1934
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Jets = Fractals
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i

j

k

a

b

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j 
→ “soft”:|MF+1(. . . , i, j, k. . . )|2

jg!0! g2sC
(pi · pk)

(pi · pj)(pj · pk)
|MF (. . . , i, k, . . . )|2

Coherence → Parton j really emitted by (i,k) “colour antenna” 

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times
→ nested factorizations 

Most bremsstrahlung is 
driven by divergent 
propagators → simple structure 

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Bremsstrahlung

Factorization in Soft and Collinear Limits

|M(. . . , pi, pj , pk . . .)|2
jg!0! g2sC

2sik
sijsjk

|M(. . . , pi, pk, . . .)|2

|M(. . . , pi, pj . . .)|2
i||j! g2sC

P (z)

sij
|M(. . . , pi + pj , . . .)|2

P(z) :  “Altarelli-Parisi Splitting Functions” (more later)

“Soft Eikonal” : generalizes to Dipole/Antenna Functions (more later) 

(calculated process by process)For any basic process
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Singularities: mandated by gauge theory
Non-singular terms: process-dependent 

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF
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Iterated factorization
Gives us a universal approximation to ∞-order tree-level cross sections. 

Exact in singular (strongly ordered) limit.
Finite terms (non-universal) → Uncertainties for non-singular (hard) radiation

But something is not right … Total σ would be infinite … 
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Loops and Legs
Coefficients of the Perturbative Series
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

The corrections from 
Quantum Loops are 

missing

Universality 
(scaling)

Jet-within-a-jet-within-a-jet-...
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Evolution
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Evolution
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%
of σtot

Evolution
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Unitarity
Kinoshita-Lee-Nauenberg: 

(sum over degenerate quantum states = finite)

Loop = - Int(Tree) + F
Parton Showers neglect F 

→ Leading-Logarithmic (LL) Approximation

→ includes both real (tree) and virtual (loop) corrections

Imposed by Event evolution:  

When (X) branches to (X+1):
Gain one (X+1). Loose one (X). 

→ evolution equation with kernel
d�X+1

d�X

Evolve in some measure of resolution 
~ hardness, 1/time … ~ fractal scale

Unitarity → Evolution

►  Interpretation:  the structure evolves! (example: X = 2-jets) 
•  Take a jet algorithm, with resolution measure “Q”, apply it to your events 
•  At a very crude resolution, you find that everything is 2-jets  

•  At finer resolutions  some 2-jets migrate  3-jets = σX+1(Q) = σX;incl– σX;excl(Q) 
•  Later, some 3-jets migrate further, etc  σX+n(Q) = σX;incl– ∑σX+m<n;excl(Q) 
•  This evolution takes place between two scales, Qin ~ s and Qend ~ Qhad 

►  σX;tot  = Sum (σX+0,1,2,3,…;excl ) = int(dσX) 
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Evolution Equations
What we need is a differential equation

Boundary condition: a few partons defined at a high scale (QF)
Then evolves (or “runs”) that parton system down to a low scale 
(the hadronization cutoff ~ 1 GeV) → It’s an evolution equation in QF

Close analogue: nuclear decay
Evolve an unstable nucleus. Check if it decays + follow chains of 
decays.
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In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,
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where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= c

N

. (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp
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This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= c

N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�

= g2
s

C A(�) �(Q2
1, Q

2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)
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Decay constant Probability to remain undecayed in the time 
interval [t1,t2]

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,

�(Q2
1, Q

2
2) = exp

 
�
Z

Q

2

2

Q

2

1

dP (�)

d�

d�

!
= exp

 
�
Z

Q

2

2

Q

2

1

g2
s

C A(�) d�

!
, (10)

where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= c

N

. (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp

✓
�
Z

t

2

t

1

c
N

dt

◆
= exp (�c

N

�t) . (12)

This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= c

N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�

= g2
s

C A(�) �(Q2
1, Q

2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)

6

Decay probability per unit time

(requires that the nucleus did not already decay)

= 1� cN�t+O(c2N )

∆(t1,t2) :  “Sudakov Factor”
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First Order
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Times

Nuclear Decay
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S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
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dt
dP
dt

)
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The Sudakov Factor

In nuclear decay, the Sudakov factor counts: 
How many nuclei remain undecayed after a time t

The Sudakov factor for a parton system 
counts:

The probability that the parton system doesn’t evolve 
(branch) when we run the factorization scale (~1/time) 
from a high to a low scale 
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In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
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Evolution probability per unit “time”

(replace cN by proper shower evolution kernels)
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This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,
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. (11)
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This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
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N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�
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s

C A(�) �(Q2
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2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)

6

Probability to remain undecayed in the time interval [t1,t2]

(replace t by shower evolution scale)
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What’s the evolution kernel?

Altarelli-Parisi splitting functions
Can be derived (in the collinear limit) from requiring 
invariance of the physical result with respect to QF → RGE
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Altarelli-Parisi
(E.g., PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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a

c
b

pb = z pa

pc = (1-z) pa

dt =
dQ2

Q2
= d lnQ2

… with Q2 some measure of “hardness”
= event/jet resolution

measuring parton virtualities / formation time / …
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Coherence
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Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand

Approximations to 
Coherence:

Angular Ordering (HERWIG)

Angular Vetos (PYTHIA)

Coherent Dipoles/Antennae 
(ARIADNE, Catani-Seymour, VINCIA)

More interference effects can be included by matching to full matrix elements

→ an example of an interference effect that can be treated probabilistically
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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Coherence at Work
Example: quark-quark scattering in hadron collisions  

Consider one specific phase-space point (eg scattering at 45o) 
2 possible colour flows: a and b
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a) “forward” 
colour flow

b) “backward” 
colour flow
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Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

http://arxiv.org/abs/arXiv:1210.6345
http://arxiv.org/abs/arXiv:1210.6345
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Antennae
Observation: the evolution kernel is responsible 
for generating real radiation. 

→ Choose it to be the ratio of the real-emission matrix element 
to the Born-level matrix element
→ AP in coll limit, but also includes the Eikonal for soft radiation.
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s
I

K

i
j
k

(sij,sjk) (…)
(…)

Dipole-Antennae
(E.g., ARIADNE, VINCIA)

S({p}X,O) = �(O ⇤O({p}X))
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Antenna functions of invariants

aqq̄�qgq̄ = 2CF
sijsjk

�
2siks + s2

ij + s2
jk

⇥

aqg�qgg = CA
sijsjk

�
2siks + s2

ij + s2
jk � s3

ij

⇥

agg�ggg = CA
sijsjk

�
2siks + s2

ij + s2
jk � s3

ij � s3
jk

⇥

aqg�qq̄0q0 = TR
sjk

�
s� 2sij + 2s2

ij

⇥

agg�gq̄0q0 = aqg�qq̄0q0

28

… + non-singular terms

2→3 instead of 1→2 
(→ all partons on shell)
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Bootstrapped Perturbation Theory

24

Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the 
perturbative series (approximate infinite-order resummation)

+0(2) +1(2) …

+0(1) +1(1) +2(1) +3(1)

Lowest 
Order +1(0) +2(0) +3(0)
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No. of Bremsstrahlung Emissions
(real corrections)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation

Unitarity

Cancellation of real & virtual singularities

fluctuations within fluctuations

But ≠ full QCD! Only LL Approximation (→ matching)
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The Shower Operator

25

Born {p} :  partons

But instead of evaluating O directly on the Born final state, 
first insert a showering operator

Most showers, with the exception of ARIADNE and the Winter–Krauss shower [32], are based on
collinear factorization, which is to say 1 → 2 branching in shower evolution. (PYTHIA 8 combines
a 1 → 2 splitting probability with a 2 → 3 phase-space mapping.) In the present paper, we continue
the development of a leading-log (LL) parton shower [33] based on dipole antennæ, that is 2 → 3
branching. We choose a simpler context than hadron collisions, that of electron–positron collisions.
This allows us to set aside the questions of initial-state emission as well as those of the underlying
event.

In sec. 2, we describe in greater detail the ingredients needed for such a shower, as well as our
normalization conventions, and compare the origins of different singularities and corresponding log-
arithms in different shower formalisms. We also discuss the different matching approaches in more
detail. In sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose
specializations correspond to a wide variety of interesting evolution variables. We then solve the re-
sulting evolution equation. In sec. 4, we discuss the shower algorithm, as well as improvements that
can be made to its logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
infrared-safe observable O,

dσH
dO

∣∣∣∣Born
=
∫

dΦH |M (0)
H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=
∫

dΦH |M (0)
H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appear-

3

Born
+ shower S : showering operator

{p} :  partons
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detail. In sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose
specializations correspond to a wide variety of interesting evolution variables. We then solve the re-
sulting evolution equation. In sec. 4, we discuss the shower algorithm, as well as improvements that
can be made to its logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
infrared-safe observable O,

dσH
dO

∣∣∣∣Born
=
∫

dΦH |M (0)
H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=
∫

dΦH |M (0)
H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appear-

3

H = Hard process

Unitarity: to first order, S does nothing
S({p}H ,O) = � (O �O({p}H)) + O(↵s)
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(Markov Chain)

The Shower Operator

To ALL Orders

All-orders Probability that nothing happens
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S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

“Nothing Happens”

“Something Happens”

(Exponentiation)
Analogous to nuclear decay

N(t) ≈ N(0) exp(-ct)

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

∆(t1, t2) = exp

(

−
∫ t2

t1

dt
dP
dt

)

“Evaluate Observable”→ 

“Continue Shower”→ 
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2. Generate another Random Number, Rz ∈ [0,1]

To find second (linearly independent) phase-space invariant

Solve equation                               for z (at scale t)

With the “primitive function” Iz(z, t) =

Z z

zmin(t)
dz

d�(t0)

dt0

����
t0=t

Rz =
Iz(z, t)

Iz(zmax

(t), t)

A Shower Algorithm

1. Generate Random Number, R ∈ [0,1]
Solve equation                  for t (with starting scale t1)

Analytically for simple splitting kernels, 
else numerically (or by trial+veto)
→ t scale for next branching
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R = �(t1, t)
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0.8

1.0

yij ! sij!sijk ! 1"xk

y jk
!
s jk
!s
ijk
!
1"
x i

Figure 1: Contours of constant value of the antenna function, ā0ijk for qq̄ → qgq̄ derived from Z decay
as function of the two phase-space invariants, with an arbitrary normalization and a logarithmic color
scale. Larger values are shown in lighter shades. The (single) collinear divergences sit on the axes,
while the (double) soft divergence sits at the origin.

factor, and ā0ijk is a generic color- and coupling-stripped dipole-antenna function, with superscript 0 to
denote a tree-level quantity. The three-particle matrix element is averaged azimuthally (over φ). Note
that our use of lower-case letters for the antenna function is intended to signify that it corresponds to
what is called a sub-antenna in ref. [36] for which lower-case letters are likewise used2.

For illustration, contours of constant value of ā0qgq̄(s, sqg, sgq̄) as derived from Z decay are shown
in fig. 1, over the 2 → 3 phase space, with an arbitrary normalization and a logarithmic color scale.
This function is called A0

3 in ref. [36] and is identical to the radiation function used for qq̄ → qgq̄
splittings in ARIADNE. One clearly sees the large enhancements towards the edges of phase space,
with a double pole (the overlap of two singularities, usually called soft and collinear) sitting at the
origin, and single singularities (soft or collinear) localized on the axes.

Writing the coupling factor as g2 = 4παs and combining it with the phase space factor, eq. (12),
we have the following antenna function normalization

a0IK→ijk(s, sij, sjk) ≡
1

√
λ
(
s,m2

I ,m
2
K

)
αs

4π
Cijk ā0ijk(s, sij , sjk) . (15)

That is, we use the notation ā for the coupling- and color-stripped antenna function, and the notation
a for the “dressed” antenna function, i.e., including its coupling, color, and phase-space prefactors.

Note that g2×(phase-space normalization) leads to a factor αs/(4π) independently of the type of
branching. As we believe that the formalism becomes more transparent if the origin of each factor
is kept clear throughout, we shall therefore use this factor for all branchings, instead of the more
traditional convention of using αs/(2π) for some branchings and αs/(4π) for others. Obviously, this
convention choice will be compensated by our conventions for the color factors and antenna-function
normalizations, such that the final result remains independent of this choice.

2Thus, in the notation of ref. [36], our dipole-antenna functions would be ā0
3 = A0

3, d̄03 = d03, ē03 =
1
2E

0
3 , f̄0

3 = f0
3 , and

ḡ03 =
1
2G

0
3.

7

t

t1

(t,z)

3. Generate a third Random Number, Rφ ∈ [0,1]
Solve equation                for φ → Can now do 3D branching R' = '/2⇡
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Perturbative Ambiguities
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6

where λ(a, b, c) = a2+b2+c2−2ab−2bc−2ca is the Källén function, s[i] is the invariant mass squared
of the branching dipole, and mâ,b̂ are the rest masses of the original endpoint partons. The second line
represents the massless case, with the two orientation angles θ and ψ fixed as discussed above.

Immediately following the phase space in eq. (2) is a δ function requiring that the integration variable
tn+1 should be equal to the ordering variable t evaluated on the set of n+1 partons, {p}n+1, i.e. that the
configuration after branching indeed corresponds to a resolution scale of tn+1. We leave the possibility
open that different mappings will be associated with different functional forms for the post-branching
resolution scale, and retain a superscript on t[i] to denote this.

Finally, there are the evolution or showering kernels Ai({p}n→{p}n+1), representing the differen-
tial probability of branching, which we take to have the following form,

Ai({p}n→{p}n+1) = 4παs(µR({p}n+1)) Ci ai({p}n→{p}n+1) , (11)

where 4παs = g2
s is the strong coupling evaluated at a renormalization scale defined by the function

µR, Ci is the color factor (e.g. Ci = Nc = 3 for gg → ggg), and ai is a radiation function, giving a
leading-logarithmic approximation to the corresponding squared evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over possible overlapping phase-space regions, the
combined result should contain exactly the correct leading soft and collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are in constrast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty envelope. The renormalization scale µR could in
principle be a constant (fixed coupling) or running. Again, the point here is not to impose a specific
choice but just to ensure that the language is sufficiently general to explore the ambiguity.

Together, eqs. (2), (4), and (11) can be used as a framework for defining more concrete parton
showers. An explicit evolution algorithm (whether based on partons, dipoles, or other objects) must
specify:

1. The choice of perturbative evolution variable(s) t[i].

2. The choice of phase-space mapping dΦ[i]
n+1/dΦn.

3. The choice of radiation functions ai, as a function of the phase-space variables.

4. The choice of renormalization scale function µR.

5. Choices of starting and ending scales.

The definitions above are already sufficient to describe how such an algorithm can be matched to
fixed order perturbation theory. We shall later present several explicit implementations of these ideas, in
the form of the VINCIA code, see section 5.

Let us begin by seeing what contributions the pure parton shower gives at each order in perturbation
theory. Since∆ is the probability of no branching between two scales, 1−∆ is the integrated branching
probability Pbranch. Its rate of change gives the instantaneous branching probability over a differential

The final states generated by a shower 
algorithm will depend on

→ gives us additional handles for uncertainty estimates, beyond just μR

+ ambiguities can be reduced by including more pQCD → matching!

Ordering & Evolution-
scale choices

Recoils, kinematics

Non-singular terms,
Reparametrizations, 
Subleading Colour

Phase-space limits / suppressions for 
hard radiation and choice of 

hadronization scale 
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So combine them!

Jack of All Orders, Master of None?

Nice to have all-orders solution
But it is only exact in the singular (soft & collinear) limits

→ gets the bulk of bremsstrahlung corrections right, but 
fails equally spectacularly: for hard wide-angle radiation: 
visible, extra jets

… which is exactly where fixed-order calculations work!
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See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

P. Skands Introduction to QCD

F @ LO⇥LL

`
(l

oo
ps

)

2 �
(2)
0 �

(2)
1

. . .

1 �
(1)
0 �

(1)
1 �

(1)
2

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2 �

(0)
3

. . .

0 1 2 3 . . .
k (legs)

+

F+1 @ LO⇥LL

`
(l

oo
ps

)

2 �
(2)
0 �

(2)
1

. . .

1 �
(1)
0 �

(1)
1 �

(1)
2

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2 �

(0)
3

. . .

0 1 2 3 . . .
k (legs)

=

F & F+1 @ LO⇥LL

`
(l

oo
ps

)

2 �
(2)
0 �

(2)
1

. . .

1 �
(1)
0 �

(1)
1 �

(1)
2

. . .

0 �
(0)
0 �

(0)
1 �

(0)
2 �

(0)
3

. . .

0 1 2 3 . . .
k (legs)

Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Image Credits: istockphoto

Matching 1: Slicing

First emission: “the HERWIG correction”
Use the fact that the angular-ordered HERWIG parton shower has a 
“dead zone” for hard wide-angle radiation (Seymour, 1995)

Many emissions: the MLM & CKKW-L prescriptions 
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events

— 47 —

Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)
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The “CKKW” Prescription
Start from a set of fixed-order MEs

31

�inc
F �inc

F+1(Qcut) �inc
F+2(Qcut)

Separate Phase-Space Integrations

Wish to add showers while eliminating Double Counting: 
Transform inclusive cross sections, for “X or more”, to exclusive ones, for “X and only X”

�exc

F+2

(QF+2

)

Now add a genuine parton shower → remaining evolution down to confinement scale

Start from QF+2Start from Qcut

�exc

F+1

(Q
cut

)

�exc

F+1

(QF+1

)

Jet Algorithm (CKKW) → Recluster back to F → “fake” brems history
Or use statistical showers (Lönnblad), now done in all implementations

Reweight each internal line by shower Sudakov factor & each vertex by αs(µPS)

�exc

F (Q
cut

)

Reweight each external line by shower Sudakov factor

Catani, Krauss, Kuhn, Webber, JHEP11(2001)063
Lönnblad, JHEP05(2002)046
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Sl ic ing: The Cost

32

0.1s

1s

10s

100s

1000s

2 3 4 5 6

Z→n : Number of Matched Emissions

1s

10s

100s

1000s

10000s

2 3 4 5 6

Z→n : Number of Matched Emissions

1. Initialization time
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

SHERPA (C
KKW-L)

2. Time to generate 1000 events
(Z → partons, fully showered & 
matched. No hadronization.)

1000 SHOWERS

(example of st
ate of th

e art)
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Matching 2: Subtraction

LO × Shower NLO

33

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

LO × Shower NLO - ShowerNLO

34

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation … Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Expand shower approximation to 
NLO analytically, then subtract:

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

LO × Shower (NLO - ShowerNLO) 
× Shower

35

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X(1) X(1) …

X(1) X(1) X(1) X(1) …

Born X+1(0) X(1) X(1) …

… Subleading corrections generated by 
shower off subtracted ME 

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

36

Combine → MC@NLO
Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been almost fully automated in aMC@NLO

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

NLO: for X inclusive
LO for X+1
LL: for everything else

Note 1: NOT NLO for X+1

Note 2: Multijet tree-level 
matching still superior for X+2

NB: w < 0 are a problem because they kill efficiency:  
Extreme example: 1000 positive-weight - 999 negative-weight events → statistical precision of 1 
event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Frixione, Webber, JHEP 0206 (2002) 029

Examples: MC@NLO, aMC@NLO
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Standard Paradigm: 
Have ME for X, X+1,…, X+n;  
Want to combine and add showers   →    “The Soft Stuff” 

Works pretty well at low multiplicities
Still, only corrected for “hard” scales; Soft still pure LL.

At high multiplicities:
Efficiency problems: slowdown from need to compute and 
generate phase space from dσX+n, and from unweighting 
(efficiency also reduced by negative weights, if present) 
Scale hierarchies: smaller single-scale phase-space region
Powers of alphaS pile up

Better Starting Point: a QCD fractal?

Matching 3: ME Corrections

37

Double counting, IR 
divergences, multiscale logs
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Interleaved Paradigm: 
Have shower; want to improve it using ME for X, X+1, …, X+n.

Interpret all-orders shower structure as a trial 
distribution 

Quasi-scale-invariant: intrinsically multi-scale (resums logs)

Unitary: automatically unweighted (& IR divergences → multiplicities)

More precise expressions imprinted via veto algorithm: ME 
corrections at LO, NLO, and more? → soft and hard
No additional phase-space generator or σX+n calculations → fast 

(shameless VINCIA promo)
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Interleaved Paradigm: 
Have shower; want to improve it using ME for X, X+1, …, X+n.

Interpret all-orders shower structure as a trial 
distribution 

Quasi-scale-invariant: intrinsically multi-scale (resums logs)

Unitary: automatically unweighted (& IR divergences → multiplicities)

More precise expressions imprinted via veto algorithm: ME 
corrections at LO, NLO, and more? → soft and hard
No additional phase-space generator or σX+n calculations → fast 

Automated Theory Uncertainties
For each event: vector of output weights (central value = 1) 
+ Uncertainty variations. Faster than N separate samples; only 
one sample to analyse, pass through detector simulations, etc.

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

LO: Giele, Kosower, Skands, PRD84(2011)054003           NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1303.4974
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Matching 3: ME Corrections

First Order
PYTHIA: LO1 corrections to most SM and BSM decay 
processes, and for pp → Z/W/H (Sjöstrand 1987)
POWHEG (& POWHEG BOX): LO1 + NLO0 corrections for 
generic processes (Frixione, Nason, Oleari, 2007)

Multileg NLO:
VINCIA: LO1,2,3,4 + NLO0,1 (shower plugin to PYTHIA 8; 
formalism for pp soon to appear) (see previous slide)
MiNLO-merged POWHEG: LO1,2 + NLO0,1 for pp → Z/W/H
UNLOPS: for generic processes (in PYTHIA 8, based on 
POWHEG input) (Lönnblad & Prestel, 2013)
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Illustrations from: PS, TASI Lectures, arXiv:1207.2389

Legs
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X
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ai |MF |2

ai !
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1

R
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t

Start at Born level Virtues: 
No “matching scale”

No negative-weight events
Can be very fast

Examples: PYTHIA, POWHEG, VINCIA

http://arxiv.org/abs/arXiv:1207.2389
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.6 -O2 ; single 3.06 GHz core (4GB RAM)

Time to generate 1000 showers 
(seconds)

0.1

1

10

100

1000

10000

2 3 4 5 6

Z→n : Number of Matched Legs

Initialization Time (seconds)

0.1

1

10

100

1000

2 3 4 5 6

Z→n : Number of Matched Legs

Hadronization 
Time (LEP)

Global Sector SHERPA
Old Global Old Sector

SHERPA 1.4.0
VINCIA 1.029

Figure 7: Comparison of computation speeds between SHERPA version 1.4.0 [27] and VINCIA 1.029 +
PYTHIA 8.171, as a function of the number of legs that are matched to matrix elements, for hadronic Z
decays. Left: initialization time (to precompute cross sections, warm up phase-space grids, etc, before event
generation). Right: time to generate 1000 parton-level showered events (not including hadronization), with
VINCIA’s global and sector showers shown separately, with and without (“old”) helicity dependence. For
comparison, the average time it takes to hadronize such events with PYTHIA’s string hadronization model [28]
is shown as a dashed horizontal line. Further details on the setup used for these runs are given in the text.

complicated structures in phase space. This means that even fairly clever multi-channel strate-
gies have a hard time achieving high efficiency over all of it. In GKS, this problem is circum-
vented by generating the phase space by a (trial) shower algorithm, which is both algorithmi-
cally fast and is guaranteed to get at least the leading QCD singularity structures right1. Since
those structures give the largest contributions, the fact that the trials are less efficient for hard
radiation has relatively little impact on the overall efficiency2. Combining this with the clean
properties of the antenna phase-space factorization and with matching at the preceding orders,
the trial phase-space population at any given parton multiplicity is already very close to the
correct one, and identical to it in the leading singular limits, producing the equivalent of very
high matching-and-unweighting efficiencies.

• Finally, the addition of helicity dependence to the trial generation in this paper allows us to
match to only a single helicity amplitude at a time, at each multiplicity. This gives a further
speed gain relative to the older approach [9] in which one had to sum over all helicity con-
figurations at each order. In addition, the MHV-type helicity configurations tend to give the
dominant contribution to the spin-summed matrix element. MHV amplitudes are also those
best described by the shower because they contain the maximum number of soft and collinear
singularities.

The speed of the old (helicity-independent) VINCIA algorithm was examined in [7], for the pro-
cess of Z decay to quarks plus showers, and was there compared to SHERPA [27], as an example of a
slicing-based multileg matching implementation. In fig. 7, we repeat this comparison, including now

1A related type of phase-space generator is embodied by the SARGE algorithm [25], and there are also similarities with
the forward-branching scheme proposed in [26].

2As long as all of phase-space is covered and the trials remain overestimates over all of it, something which we have
paid particular attention to in VINCIA, see [9].

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 + MADGRAPH 4.4.26 ; 

gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Speed

40

1. Initialization time
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

PYTHIA+VINCIA

2. Time to generate 1000 events
(Z → partons, fully showered & 
matched. No hadronization.)

VINCIA (GKS)

(example of st
ate of th

e art)

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

se
co

nd
s

SHERPA (CKKW-L)

polarized

unpolarized

1000 SHOWERS

sector

global

http://arxiv.org/abs/arXiv:1301.0933
http://arxiv.org/abs/arXiv:1301.0933
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Confinement

41

Short Distances ~ 
“Coulomb”

Partons

Long Distances ~ 
Linear Potential

Quarks (and 
gluons) confined 
inside hadrons

Potential between a quark and an 
antiquark as function of distance, R

~ Force required to lift a 16-ton truck

What physical
system has a 
linear potential?
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String Breaks

In “unquenched” QCD
g→qq → The strings would break

42

Illustrations by T. Sjöstrand

P / exp

 
�m2

q � p2?q



!
(simplified colour representation)

String Breaks:
via Quantum Tunneling
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The (Lund) String Model

43

Map:

• Quarks → String 
Endpoints

• Gluons → Transverse 
Excitations (kinks)

• Physics then in terms of 
string worldsheet 
evolving in spacetime

• Probability of string 
break (by quantum 
tunneling) constant per 
unit area → AREA LAW

Simple space-time picture
Details of string breaks more complicated

Pedagogical Review: B. Andersson, The Lund model. 
Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.



Hadron i za t ion : Summar y

Distance  Sca le s  ~  10 -15  m = 1  fe rmi 

The problem: 
Given a set of coloured partons resolved at a scale of ~ 1 GeV, need a 
(physical) mapping to a new set of degrees of freedom = colour-
neutral hadronic states.

Numerical models do this in three steps
1. Map partons onto endpoints/kinks of continuum of strings ~ highly 

excited hadronic states (evolves as string worldsheet)

2. Iteratively map strings/clusters onto discrete set of primary hadrons 
(string breaks, via quantum tunneling)

3. Sequential decays into secondary hadrons (e.g., ρ→ππ , Λ0→nπ0, π0→γγ, ...)
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What is Tuning?

The value of the strong coupling at the Z pole 
Governs overall amount of radiation

Renormalization Scheme and Scale for αs 
1- vs 2-loop running, MSbar / CMW scheme, µR ~ pT2

Additional Matrix Elements included?
At tree level / one-loop level?  Using what scheme? 

Ordering variable, coherence treatment, effective 
1→3 (or 2→4), recoil strategy, …

Branching Kinematics (z definitions, local vs global momentum 
conservation), hard parton starting scales / phase-space cutoffs, 
masses, non-singular terms, …

45

FSR pQCD Parameters
αs(mZ)

αs Running

Matching

Subleading Logs



P.  S k a n d s

PYTHIA 8 (hadronization off)

Need IR Corrections?

46

vs LEP: Thrust
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Significant Discrepancies (>10%)
for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.

– 3 –

1� T ! 1

2
1� T ! 0

Major

Minor

Oblateness
= Major - MinorMinorMajor1-T
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Need IR Corrections?
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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Value of Strong Coupling

48

Note:  Value of Strong coupling is
αs(MZ) = 0.12
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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Wait … is this Crazy?
Best result

Obtained with αs(MZ) ≈ 0.14 
                              ≠ World Average = 0.1176 ± 0.0020

Value of αs depends on the order and scheme
MC ≈ Leading Order + LL resummation
Other leading-Order extractions of αs ≈ 0.13 - 0.14
Effective scheme interpreted as “CMW” → 0.13; 
2-loop running → 0.127; NLO → 0.12 ?

Not so crazy
Tune/measure even pQCD parameters with the actual generator. 
Sanity check = consistency with other determinations at a 
similar formal order, within the uncertainty at that order 
(including a CMW-like scheme redefinition to go to ‘MC scheme’)

49

Improve → Matching at LO and NLO
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Sneak Preview:

Multijet NLO Corrections with VINCIA

50
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Figure 15. L3 light-flavour event shapes: Thrust, C, and D.

The three main event-shape variables that were used to determine the value of ↵
s

(M
Z

)

are shown in figure 15, with upper panes showing the distributions themselves (data and MC)

and lower panes showing the ratios of MC/data, with one- and two-sigma uncertainties on

the data shown by darker (green) and lighter (yellow) shaded bands, respectively. The Thrust

(left) and C-parameter (middle) distributions both have perturbative expansions that start

at O(↵
s

) and hence they are both explicitly sensitive to the corrections considered in this

paper. The expansion of the D parameter (right) begins at O(↵2
s

). It is sensitive to the NLO

3-jet corrections mainly via unitarity, since all 4-jet events begin their lives as 3-jet events in

our framework. It also represents an important cross-check on the value extracted from the

other two variables.

For a pedagogical description of the variables, see [63]. Pencil-like 2-jet configurations are

to the left (near zero) for all three observables. This region is particularly sensitive to non-

perturbative hadronization corrections. More spherical events, with several hard perturbative

emissions, are towards the right (near 0.5 for Thrust and 1.0 for C and D). The maximal ⌧ =

1�T for a 3-particle configuration is ⌧ = 1/3 (corresponding to the Mercedes configuration),

beyond which only 4-particle (and higher) states can contribute. This causes a noticeable

change in slope in the distribution at that point, see the left pane of figure 15. The same thing

happens for the C parameter at C = 3/4, in the middle pane of figure 15. The D parameter

is sensitive to the smallest of the eigenvalues of the sphericity tensor, and is therefore zero for

any purely planar event, causing it to be sensitive only to 4- and higher-particle configurations

over its entire range.

Both the new NLO tune (solid blue line with filled-dot symbols) and the old LO one

(dashed magenta line with open-triangle symbols) reproduce all three event shapes very well.

With the NLO corrections switched o↵ (solid red line with open-circle symbols), the new tune

produces a somewhat too soft spectrum, consistent with its low value of ↵
s

(M
Z

) not being
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First LEP tune with NLO 3-jet corrections
LO tune: αs(MZ) = 0.139 (1-loop running, MSbar)

NLO tune: αs(MZ) = 0.122 (2-loop running, CMW)

      Hartgring, Laenen, Skands, arXiv:1303.4974

http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1303.4974
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Summary

Parton Shower Monte Carlos
Improve lowest-order perturbation theory by including 
‘most significant’ corrections
Resonance decays, soft- and collinear radiation, 
hadronization, … → complete events

Coherence
→ Angular ordering or Coherent Dipoles/Antennae

Hard Wide-Angle Radiation: Matching
Slicing (Qcut), Subtraction (w<0), or ME Corrections

Next big step: showers with multileg NLO corrections

51

MCnet Review: Phys.Rept. 504 (2011) 145-233
PS, TASI Lectures: arXiv:1207.2389

http://arxiv.org/abs/arXiv:1101.2599
http://arxiv.org/abs/arXiv:1101.2599
http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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MCnet Studentships

52

MCnet

MCnet projects:
• PYTHIA (+ VINCIA)

• HERWIG

• SHERPA

• MadGraph

• Ariadne (+ DIPSY)

• Cedar (Rivet/Professor)

Activities include
• summer schools

(2014: Manchester?)

• short-term studentships

• graduate students

• postdocs

• meetings (open/closed)

training studentships

3-6 month fully funded studentships for current PhD 
students at one of the MCnet nodes. An excellent opportunity 
to really understand and improve the Monte Carlos you use!  

www.montecarlonet.org
for details go to:

Monte Carlo

Londo
n

CERN
Karlsru

he

LundDurha
m

Application rounds every 3 months. 

MARIE CURIE ACTIONS

funded by:

Manch
ester Louva

in

Göttin
gen

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 1 slide 7/40
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Factorization

Trivially untrue for QCD
We’re colliding, and observing, hadrons → small scales
We want to consider high-scale processes → large scale differences

Fixed Order requirements:
All resolved scales >> ΛQCD AND no large hierarchies

→ A Priori, no perturbatively calculable 
observables in hadron-hadron collisions

Factorization

d⇤

dX
=

⇥

a,b

⇥

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

d⇤̂ab�f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f � X, Q2
i , Q

2
f)

20

PDFs: needed to compute 
inclusive cross sections

FFs: needed to compute 
(semi-)exclusive cross 

sections

Resummed: All resolved scales >> ΛQCD AND X Infrared Safe

53
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Jets and Showers

Infrared Safety: Jet clustering algorithms
Map event from low resolution scale (i.e., with many 
partons/hadrons, most of which are soft) to a higher 
resolution scale (with fewer, hard, jets)

54

Jet Clustering
(Deterministic*)

(Winner-takes-all)

Parton Showering
(Probabilistic)

Q ~ Λ ~ mπ 
~ 150 MeV 

Q ~ Qhad 
~ 1 GeV

Q~ Ecm 
~ MX

Parton shower algorithms
Map a few hard partons to many softer ones

Probabilistic → closer to nature. Not uniquely invertible by 
any jet algorithm*

Many soft particles A few hard jets

Born-level MEHadronization

(* See “Qjets” for a probabilistic jet algorithm, arXiv:1201.1914)
(* See “Sector Showers” for a deterministic shower, arXiv:1109.3608)

http://arxiv.org/abs/arXiv:1201.1914
http://arxiv.org/abs/arXiv:1201.1914
http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
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Matching 1: Slicing
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

X+1(2) …

X+1(1) X+2(1) X+3(1) …

X+1(0) X+2(0) X+3(0) …

LO0 × PS(pT>pTcut)         +
Std: veto shower above some pTcut

LO1(pT1>pTcut) × PS(pT<pT1)

Highest n: veto shower above pTn

Illustrations from: PS, TASI Lectures, arXiv:1207.2389

Examples: MLM, CKKW, CKKW-L

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389


P.  S k a n d s

Matching 1: Slicing
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LO0 × PS(pT>pTcut)         +
Std: veto shower above pTcut

LO1(pT1>pTcut) × PS(pT<pT1)

Highest n: veto shower above pTn

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut
& nothing below

…
Fixed-Order ME above pT cut
& Shower Approximation below

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

X+1 now LO 
correct for hard 

radiation and still LL 
correct for soft

Examples: MLM, CKKW, CKKW-L

+ Generalizes to 
arbitrary numbers of 

jets (at LO)
Much work on 

extensions to NLO

Illustrations from: PS, TASI Lectures, arXiv:1207.2389

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Matching: Classic Example
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W + Jets
Number of jets in 
pp→W+X at the LHC
From 0 (W inclusive) 
to W+3 jets
PYTHIA includes 
matching up to W+1 
jet + shower
With ALPGEN (MLM), 
also the LO matrix 
elements for 2 and 3 
jets are included
But Normalization 
still only LO

mcplots.cern.ch

W
ith Matching

W
ithout Matching

RATIO

ETj > 20 GeV
|ηj| < 2.8

Number of Jets

W+Jets
LHC 7 TeV
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QCD Jets
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Matching not 
always needed.

Even at 6 jets, there 
is almost always at 
least one strongly 
ordered path

→ showers work!

(In W+jets, that is 
not the case)
But note that spin 
correlations between 
the jets will still be 
absent


