Parton Shower Monte Carlos

Peter Skands (CERN Theoretical Physics Dept)

LHCphenonet Summer School Cracow, Poland, September 2013

Scattering Experiments

→ Integrate differential cross sections over specific phase-space regions

Predicted number of counts = integral over solid angle

 $N_{\rm count}(\Delta\Omega) \propto \int_{\Delta\Omega} \mathrm{d}\Omega \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$

In particle physics:

Integrate over all quantum histories (+ interferences)

Lots of dimensions? Complicated integrands? → Use Monte Carlo

General-Purpose Event Generators

Calculate Everything \approx solve QCD \rightarrow requires compromise!

Improve lowest-order perturbation theory,
 by including the `most significant' corrections
 → complete events (can evaluate any observable you want)

The Workhorses

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. SHERPA : Begun in 2000. Originated in "matching" of matrix elements to showers: CKKW-L. + MORE SPECIALIZED: ALPGEN, MADGRAPH, ARIADNE, VINCIA, WHIZARD, MC@NLO, POWHEG, ...

Divide and Conquer

Factorization → Split the problem into many (nested) pieces + Quantum mechanics → Probabilities → Random Numbers

 $\mathcal{P}_{\mathrm{event}} \;=\; \mathcal{P}_{\mathrm{hard}} \,\otimes\, \mathcal{P}_{\mathrm{dec}} \,\otimes\, \mathcal{P}_{\mathrm{ISR}} \,\otimes\, \mathcal{P}_{\mathrm{FSR}} \,\otimes\, \mathcal{P}_{\mathrm{MPI}} \,\otimes\, \mathcal{P}_{\mathrm{Had}} \,\otimes\, \dots$

Hard Process & Decays:

Use (N)LO matrix elements

 \rightarrow Sets "hard" resolution scale for process: Q_{MAX}

ISR & FSR (Initial & Final-State Radiation):

Altarelli-Parisi equations \rightarrow differential evolution, dP/dQ², as function of resolution scale; run from Q_{MAX} to ~ 1 GeV (More later)

MPI (Multi-Parton Interactions)

Additional (soft) parton-parton interactions: LO matrix elements

→ Additional (soft) "Underlying-Event" activity (Not the topic for today)

Hadronization

Non-perturbative model of color-singlet parton systems \rightarrow hadrons

(PYTHIA)

PYTHIA anno 1978 (then called JETSET)

LU TP 78-18 November, 1978

A Monte Carlo Program for Quark Jet Generation

T. Sjöstrand, B. Söderberg

A Monte Carlo computer program is presented, that simulates the fragmentation of a fast parton into a jet of mesons. It uses an iterative scaling scheme and is compatible with the jet model of Field and Feynman.

Note:

Field-Feynman was an early fragmentation model Now superseded by the String (in PYTHIA) and Cluster (in HERWIG & SHERPA) models.

SUBROUTINE JETGEN(N) COMMON /JET/ K(100,2), P(100,5) COMMON /PAR/ PUD, PS1, SIGMA, CX2, EBEG, WFIN, IFLBEG COMMON /DATA1/ MESO(9,2), CMIX(6,2), PMAS(19) IFLSGN=(10-IFLBEG)/5 W=2.*E8EG 1=0 IPD=0 C 1 FLAVOUR AND PT FOR FIRST QUARK IFL1=IABS(IFLBEG) PT1=SIGMA*SQRT(-ALOG(RANF(D))) PHI1=6.2832*RANF(0) PX1=PT1*COS(PHI1) PY1=PT1*SIN(PHI1) 100 I=I+1 C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK IFL2=1+INT(RANF(0)/PUD) PT2=SIGMA*SQRT(-ALOG(RANF(0))) PH12=6.2832*RANF(0) PX2=PT2*COS(PHI2) PY2=PT2*SIN(PHI2) C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED K(I,1)=MESO(3*(IFL1-1)+IFL2,IFLSGN) ISPIN=INT(PS1+RANF(0)) K(I:2)=1+9*ISPIN+K(I:1) IF(K(I,1).LE.6) GOTO 110 TMIX=RANF(0) KM=K(I,1)-6+3*ISPIN K(I,2)=8+9*ISPIN+INT(TMIX+CMIX(KM,1))+INT(TMIX+CMIX(KM,2)) C 4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS 110 P(1,5)=PMAS(K(1,2)) P(I,1) = PX1 + PX2P(1,2) = PY1 + PY2PMTS=P(1,1)**2+P(1,2)**2+P(1,5)**2 C 5 RANDOM CHOICE OF X=(E+PZ)MESON/(E+PZ)AVAILABLE GIVES E AND PZ x = RANF(0)IF(RANF(D).LT.CX2) X=1.-X**(1./3.) P(1,3)=(X*W-PMTS/(X*W))/2. P(I,4)=(X*W+PMTS/(X*W))/2. C & IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES 120 IPD=IPD+1 IF(K(IPD,2).GE.8) CALL DECAY(IPD,I) IF(IPD.LT.I.AND.I.LE.96) GOTO 12D C 7 FLAVOUR AND PT OF QUARK FORMED IN PAIR WITH ANTIQUARK ABOVE IFL1=IFL2 PX1 = -PX2PY1=-PY2 C 8 IF ENOUGH E+PZ LEFT, GO TO 2 W = (1, -X) * WIF(W.GT.WFIN.AND.I.LE.95) GOTO 100 N = IRETURN END

(PYTHIA)

PYTHIA anno 2013

(now called PYTHIA 8)

LU TP 07-28 (CPC 178 (2008) 852) October, 2007

A Brief Introduction to PYTHIA 8.1

T. Sjöstrand, S. Mrenna, P. Skands

The Pythia program is a standard tool for the generation of high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multihadronic final state. It contains a library of hard processes and models for initial- and final-state parton showers, multiple parton-parton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and interfaces to external programs. [...]

~ 100,000 lines of C++

What a modern MC generator has inside:

- Hard Processes (internal, interfaced, or via Les Houches events)
- BSM (internal or via interfaces)
- PDFs (internal or via interfaces)
- Showers (internal or inherited)
- Multiple parton interactions
- Beam Remnants
- String Fragmentation
- Decays (internal or via interfaces)
- Examples and Tutorial
- Online HTML / PHP Manual
- Utilities and interfaces to external programs

(some) Physics

cf. equivalent-photon approximation Weiszäcker, Williams ~ 1934

Charges Stopped or kicked

Radiation

a.k.a. Bremsstrahlung Synchrotron Radiation

Radiation

The harder they stop, the harder the fluctations that continue to become radiation

Jets = Fractals

- Most bremsstrahlung is driven by divergent propagators → simple structure
- Amplitudes factorize in singular limits (→ universal "conformal" or "fractal" structure)

$$\propto \frac{1}{2(p_a \cdot p_b)}$$

Partons ab \rightarrow P(z) = Altarelli-Parisi splitting kernels, with z = energy fraction = E_a/(E_a+E_b) "collinear": $|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)|^2 \xrightarrow{a||b} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots, a+b, \ldots)|^2$

Gluon j Coherence
$$\rightarrow$$
 Parton j really emitted by (i,k) "colour antenna"
 \rightarrow "soft":
 $|\mathcal{M}_{F+1}(\dots,i,j,k\dots)|^2 \xrightarrow{j_g \to 0} g_s^2 \mathcal{C} \frac{(p_i \cdot p_k)}{(p_i \cdot p_j)(p_j \cdot p_k)} |\mathcal{M}_F(\dots,i,k,\dots)|^2$

+ scaling violation: $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Can apply this many times \rightarrow nested factorizations

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Factorization in Soft and Collinear Limits

P(z): "Altarelli-Parisi Splitting Functions" (more later)

$$|M(\ldots, p_i, p_j \ldots)|^2 \stackrel{i||j}{\to} g_s^2 \mathcal{C} \frac{P(z)}{s_{ij}} |M(\ldots, p_i + p_j, \ldots)|^2$$

$$M(\ldots, p_i, p_j, p_k \ldots) | \stackrel{2}{\longrightarrow} \stackrel{j_g \to 0}{\longrightarrow} g_s^2 \mathcal{C} \frac{2s_{ik}}{s_{ij}s_{jk}} |M(\ldots, p_i, p_k, \ldots)|^2$$

"Soft Eikonal" : generalizes to Dipole/Antenna Functions (more later)

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3j}} d\sigma_{X+2} \ldots$

Singularities: mandated by gauge theory Non-singular terms: process-dependent

$$\begin{split} \frac{|\mathcal{M}(Z^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(Z^0 \to q_I \bar{q}_K)|^2} &= g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] \\ \frac{\mathcal{M}(H^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(H^0 \to q_I \bar{q}_K)|^2} &= g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \\ \mathbf{SOFT} & \mathbf{COLLINEAR} + \mathbf{F} \end{split}$$

Bremsstrahlung

For any basic process $d\sigma_X = \checkmark$ (calculated process by process) $d\sigma_{X+1} \sim N_C 2g_s^2 \frac{ds_{i1}}{s_{i1}} \frac{ds_{1j}}{s_{1j}} d\sigma_X \checkmark$ $d\sigma_{X+2} \sim N_C 2g_s^2 \frac{ds_{i2}}{s_{i2}} \frac{ds_{2j}}{s_{2j}} d\sigma_{X+1} \checkmark$ $d\sigma_{X+3} \sim N_C 2g_s^2 \frac{ds_{i3}}{s_{i3}} \frac{ds_{3j}}{s_{3i}} d\sigma_{X+2} \ldots$

Iterated factorization

Gives us a universal approximation to ∞ -order tree-level cross sections. Exact in singular (strongly ordered) limit.

Finite terms (non-universal) \rightarrow Uncertainties for non-singular (hard) radiation

But something is not right ... Total σ would be infinite ...

Loops and Legs

Coefficients of the Perturbative Series

Evolution

 $Q \sim Q_X$

Exclusive = n and only n jets Inclusive = n or more jets

Evolution

Exclusive = n and only n jets Inclusive = n or more jets

Evolution

Unitarity → Evolution

Unitarity

Kinoshita-Lee-Nauenberg: (sum over degenerate quantum states = finite)

Loop = -Int(Tree) + F

Parton Showers neglect F

→ Leading-Logarithmic (LL) Approximation

Imposed by Event evolution:

When (X) branches to (X+1): Gain one (X+1). Loose one (X).

 \rightarrow evolution equation with kernel $\displaystyle rac{d\sigma_{X+1}}{d\sigma_X}$

Evolve in some measure of *resolution* ~ hardness, 1/time ... ~ fractal scale

→ includes both real (tree) and virtual (loop) corrections

Interpretation: the structure evolves! (example: X = 2-jets)

- Take a jet algorithm, with resolution measure "Q", apply it to your events
- At a very crude resolution, you find that everything is 2-jets

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_F) Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff ~ 1 GeV) \rightarrow It's an evolution equation in Q_F

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant

$$\frac{\mathrm{d}P(t)}{\mathrm{d}t} = c_N$$
Probability to remain undecayed in the time
interval $[t_1, t_2]$
 $\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N \,\Delta t\right)$

Decay probability per unit time

$$\frac{\mathrm{d}P_{\mathrm{res}}(t)}{\mathrm{d}t} = \frac{-\mathrm{d}\Delta}{\mathrm{d}t} = c_N \,\Delta(t_1, t)$$

(requires that the nucleus did not already decay)

 $= 1 - c_N \Delta t + \mathcal{O}(c_N^2)$

Nuclear Decay

The Sudakov Factor

In nuclear decay, the Sudakov factor counts:

How many nuclei remain undecayed after a time t

Probability to remain undecayed in the time interval $[t_1, t_2]$

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N \,\Delta t\right)$$

The Sudakov factor for a parton system counts:

The probability that the parton system doesn't evolve (branch) when we run the factorization scale (~1/time) from a high to a low scale

Evolution probability per unit "time"

$$\frac{\mathrm{d}P_{\mathrm{res}}(t)}{\mathrm{d}t} = \frac{-\mathrm{d}\Delta}{\mathrm{d}t} = c_N \Delta(t_1, t)$$
(replace c_N by proper shower evolution kernels)
(replace t by shower evolution scale)

What's the evolution kernel?

Altarelli-Parisi splitting functions

Can be derived (*in the collinear limit*) from requiring invariance of the physical result with respect to $Q_F \rightarrow RGE$

$$P_{q \to qg}(z) = C_F \frac{1+z^2}{1-z} ,$$

$$P_{g \to gg}(z) = N_C \frac{(1-z(1-z))^2}{z(1-z)} ,$$

$$P_{g \to q\overline{q}}(z) = T_R (z^2 + (1-z)^2) ,$$

$$P_{q \to q\gamma}(z) = e_q^2 \frac{1+z^2}{1-z} ,$$

$$P_{\ell \to \ell\gamma}(z) = e_\ell^2 \frac{1+z^2}{1-z} ,$$

$$\mathrm{d}t = \frac{\mathrm{d}Q^2}{Q^2} = \mathrm{d}\ln Q^2$$

... with Q² some measure of "hardness" = event/jet resolution measuring parton virtualities / formation time / ...

Coherence

QED: Chudakov effect (mid-fifties)

QCD: colour coherence for soft gluon emission

 \rightarrow an example of an interference effect that can be treated probabilistically

More interference effects can be included by matching to full matrix elements

Work

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

hadron collisions

tering at 45°)

Figure 4: Angular distribution of the first gluon emission in $qq \rightarrow qq$ scattering at 45°, for the two different color flows. The light (red) histogram shows the emission density for the forward flow, and the dark (blue) histogram shows the emission density for the backward flow.

Another good recent example is the SM contribution to the Tevatron top-quark forwardbackward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

Antennae

Observation: the evolution kernel is responsible for generating real radiation.

 \rightarrow Choose it to be the ratio of the real-emission matrix element to the Born-level matrix element

 \rightarrow AP in coll limit, but also includes the Eikonal for soft radiation.

Dipole-Antennae (E.g., ARIADNE, VINCIA) $d\mathcal{P}_{IK \to ijk} = \frac{ds_{ij}ds_{jk}}{16\pi^2 s} a(s_{ij}, s_{jk})$

 $2 \rightarrow 3$ instead of $1 \rightarrow 2$ (\rightarrow all partons on shell)

$$a_{q\bar{q}\to qg\bar{q}} = \frac{2C_F}{s_{ij}s_{jk}} \left(2s_{ik}s + s_{ij}^2 + s_{jk}^2 \right)$$

$$a_{qg\to qgg} = \frac{C_A}{s_{ij}s_{jk}} \left(2s_{ik}s + s_{ij}^2 + s_{jk}^2 - s_{ij}^3 \right)$$

$$a_{gg\to ggg} = \frac{C_A}{s_{ij}s_{jk}} \left(2s_{ik}s + s_{ij}^2 + s_{jk}^2 - s_{ij}^3 - s_{jk}^3 \right)$$

$$a_{qg\to q\bar{q}'q'} = \frac{T_R}{s_{jk}} \left(s - 2s_{ij} + 2s_{ij}^2 \right)$$

$$a_{gg\to g\bar{q}'q'} = a_{qg\to q\bar{q}'q'}$$

... + non-singular terms

Bootstrapped Perturbation Theory

Start from an **arbitrary lowest-order** process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the perturbative series (approximate infinite-order resummation)

The Shower Operator

But instead of evaluating O directly on the Born final state, first insert a showering operator

Born
+ shower
$$\frac{d\sigma_H}{d\mathcal{O}}\Big|_{\mathcal{S}} = \int d\Phi_H |M_H^{(0)}|^2 \mathcal{S}(\{p\}_H, \mathcal{O})$$
 {p}: partons
S: showering operator

Unitarity: to first order, S does nothing

 $\mathcal{S}(\{p\}_H, \mathcal{O}) = \delta \left(\mathcal{O} - \mathcal{O}(\{p\}_H) \right) + \mathcal{O}(\alpha_s)$

The Shower Operator

To ALL Orders (Markov Chain) $S(\{p\}_X, \mathcal{O}) = \Delta(t_{\text{start}}, t_{\text{had}})\delta(\mathcal{O} - \mathcal{O}(\{p\}_X))$ "Nothing Happens" \rightarrow "Evaluate Observable" $-\int_{t_{\text{start}}}^{t_{\text{had}}} dt \frac{d\Delta(t_{\text{start}}, t)}{dt} S(\{p\}_{X+1}, \mathcal{O})$ "Something Happens" \rightarrow "Continue Shower"

All-orders Probability that nothing happens

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} \mathrm{d}t \, \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}t}\right) \quad \begin{array}{l} \text{(Exp} \\ \text{Analogou} \\ \text{N(t)} \end{array}$$

(Exponentiation) Analogous to nuclear decay N(t) ≈ N(0) exp(-ct)

A Shower Algorithm

1. Generate Random Number, $R \in [0,1]$

Solve equation $R = \Delta(t_1, t)$ for t (with starting scale t_l) Analytically for simple splitting kernels,

else numerically (or by trial+veto) → t scale for next branching

2. Generate another Random Number, $R_z \in [0,1]$

To find second (linearly independent) phase-space invariant

Solve equation
$$R_z = \frac{I_z(z,t)}{I_z(z_{\max}(t),t)}$$
 for z (at scale t)
With the "primitive function" $I_z(z,t) = \int_{z_{\min}(t)}^{z} dz \left. \frac{d\Delta(t')}{dt'} \right|_{t'=t}$

3. Generate a third Random Number, $R_{\varphi} \in [0,1]$ Solve equation $R_{\varphi} = \varphi/2\pi$ for $\varphi \rightarrow$ Can now do 3D branching

Perturbative Ambiguities

The final states generated by a shower algorithm will depend on

- 1. The choice of perturbative evolution variable(s) $t^{[i]}$. \leftarrow Ordering & Evolution-scale choices
- 2. The choice of phase-space mapping $d\Phi_{n+1}^{[i]}/d\Phi_n$. \leftarrow Recoils, kinematics
- 3. The choice of radiation functions a_i , as a function of the phase-space variables.
- 4. The choice of renormalization scale function μ_R .
- 5. Choices of starting and ending scales.

Subleading Colour Phase-space limits / suppressions for

Non-singular terms, Reparametrizations,

hard radiation and choice of hadronization scale

→ gives us additional handles for uncertainty estimates, beyond just μ_R + ambiguities can be reduced by including more pQCD → matching!

Jack of All Orders, Master of None?

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits

→ gets the bulk of bremsstrahlung corrections right, but fails equally spectacularly: for hard wide-angle radiation: **visible, extra jets**

... which is exactly where fixed-order calculations work!

So combine them!

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

FAIL!

Matching 1: Slicing

Examples: MLM, CKKW, CKKW-L

First emission: "the HERWIG correction"

Use the fact that the angular-ordered HERWIG parton shower has a "dead zone" for hard wide-angle radiation (Seymour, 1995)

Many emissions: the MLM & CKKW-L prescriptions

The "CKKW" Prescription

Slicing: The Cost

1. Initialization time 2. Time to generate 1000 events (to pre-compute cross sections $(Z \rightarrow partons, fully showered \&$ and warm up phase-space grids) matched. No hadronization.) 10000s **1000 SHOWERS** SHERPA+COMIX SHERPA (CKKW-L) 1000s 1000s (example of state of the art) 100s 100s 10s 10s 1s 1s 0.1s 3 5 5 6 4 3 2 6 4 2

$Z \rightarrow n$: Number of Matched Emissions

 $Z \rightarrow n$: Number of Matched Emissions

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; E_{CM} = 91.2 GeV ; Q_{match} = 5 GeV SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Examples: MC@NLO, aMC@NLO

LO × Shower NLO

Examples: MC@NLO, aMC@NLO

$LO \times Shower$ NLO - Shower_{NLO}

X ⁽²⁾	X+1 ⁽²⁾	•••		
X(I)	X+I ^(I)	X+2 ^(I)	X+3(I)	•••
Born	X+l ⁽⁰⁾	X+2 ⁽⁰⁾	X+3 ⁽⁰⁾	

Expand shower approximation to NLO analytically, then subtract:

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Examples: MC@NLO, aMC@NLO

LO × Shower

X ⁽²⁾	X+I ⁽²⁾	•••		
X (I)	X+I ^(I)	X+2 ⁽¹⁾	X+3 ⁽¹⁾	
Born	X+I ⁽⁰⁾	X+2 ⁽⁰⁾	X+3 ⁽⁰⁾	•••

(NLO - Shower_{NLO}) × Shower

•••

Fixed-Order ME minus Shower Approximation (NOTE: can be < 0!)

Subleading corrections generated by shower off subtracted ME

Examples: MC@NLO, aMC@NLO

Combine → MC@NLO Frixione, Webber, JHEP 0206 (2002) 029

Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been almost fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

NLO: for X inclusive LO for X+1 LL: for everything else

NB: w < 0 are a problem because they kill efficiency:

Extreme example: 1000 positive-weight - 999 negative-weight events \rightarrow statistical precision of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)

Matching 3: ME Corrections

Standard Paradigm:

Have ME for X, X+1,..., X+n;

Double counting, IR divergences, multiscale logs

Want to combine and add showers → "The Soft Stuff"

Works pretty well at low multiplicities

Still, only corrected for "hard" scales; Soft still pure LL.

At high multiplicities:

Efficiency problems: slowdown from need to compute and generate phase space from $d\sigma_{X+n}$, and from unweighting (efficiency also reduced by negative weights, if present)

Scale hierarchies: smaller single-scale phase-space region

Powers of alphaS pile up

Better Starting Point: a QCD fractal?

(shameless VINCIA promo)

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

Interleaved Paradigm:

Have shower; want to improve it using ME for X, X+1, ..., X+n.

Interpret all-orders shower structure as a trial distribution

Quasi-scale-invariant: intrinsically multi-scale (resums logs) Unitary: automatically unweighted (& IR divergences \rightarrow multiplicities) More precise expressions imprinted via veto algorithm: ME corrections at LO, NLO, and more? \rightarrow soft and hard No additional phase-space generator or σ_{X+n} calculations \rightarrow fast

Automated Theory Uncertainties

For each event: vector of output weights (central value = 1) + Uncertainty variations. Faster than N separate samples; only one sample to analyse, pass through detector simulations, etc.

LO: Giele, Kosower, Skands, PRD84(2011)054003

NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Illustrations from: PS, TASI Lectures, arXiv:1207.2389

First Order

PYTHIA: LO₁ corrections to most SM and BSM decay processes, and for pp \rightarrow Z/W/H (Sjöstrand 1987) **POWHEG** (& POWHEG BOX): LO₁ + NLO₀ corrections for generic processes (Frixione, Nason, Oleari, 2007)

Multileg NLO:

VINCIA: $LO_{1,2,3,4} + NLO_{0,1}$ (shower plugin to PYTHIA 8; formalism for pp soon to appear) (see previous slide) **MINLO**-merged POWHEG: $LO_{1,2} + NLO_{0,1}$ for pp $\rightarrow Z/W/H$ **UNLOPS**: for generic processes (in PYTHIA 8, based on POWHEG input) (Lönnblad & Prestel, 2013)

Speed

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; E_{CM} = 91.2 GeV ; Q_{match} = 5 GeV SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 + MADGRAPH 4.4.26 ; gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Confinement

Potential between a quark and an antiquark as function of distance, R

K(R) 0.9 linear par 0.8 - 10 - QU total 0.7 Short Distances ~ "Coulomb" 0.6Coulomb part 0.5 0.4 ^D $V(R) = V_2 + K R - e/R + f/R^2$ Partons 0.3 16 12 20 $\overline{24}$ 8 R

Long Distances ~ Linear Potential

Quarks (and gluons) confined inside hadrons

What physical system has a linear potential?

 $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV/fm} \iff V(r) \approx \kappa r$

 \sim Force required to lift a 16-ton truck

String Breaks

Illustrations by T. Sjöstrand

The (Lund) String Model

Gluon = kink on string, carrying energy and momentum

Simple space-time picture Details of string breaks more complicated

tunneling) constant per

unit area → AREA LAW

Hadronization: Summary

The problem:

Given a set of **coloured** partons resolved at a scale of ~ 1 GeV, need a (physical) mapping to a new set of degrees of freedom = **colour**-**neutral** hadronic states.

Numerical models do this in three steps

- Map partons onto endpoints/kinks of continuum of strings ~ highly excited hadronic states (evolves as string worldsheet)
- 2. Iteratively map strings/clusters onto **discrete set of primary hadrons** (string breaks, via quantum tunneling)
- 3. Sequential decays into secondary hadrons (e.g., $\rho \rightarrow \pi\pi$, $\Lambda^0 \rightarrow n\pi^0$, $\pi^0 \rightarrow \gamma\gamma$, ...)

Distance Scales ~ 10⁻¹⁵ m = 1 fermi

What is Tuning?

FSR pQCD Parameters

a_s(m_Z)

The value of the strong coupling at the Z pole Governs overall amount of radiation

Renormalization Scheme and Scale for as

1- vs 2-loop running, MSbar / CMW scheme, $\mu_R \sim p_T{}^2$

M	a	tc	hi	n	n
	u	cc			Э

Additional Matrix Elements included?

At tree level / one-loop level? Using what scheme?

Ordering variable, coherence treatment, effective Subleading Logs $1 \rightarrow 3$ (or $2 \rightarrow 4$), recoil strategy, ...

Branching Kinematics (z definitions, local vs global momentum conservation), hard parton starting scales / phase-space cutoffs, masses, non-singular terms, ...

Need IR Corrections?

PYTHIA 8 (hadronization off) vs LEP: Thrust

Significant Discrepancies (>10%)

for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

Note: Value of Strong coupling is $a_s(M_Z) = 0.14$

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

Note: Value of Strong coupling is $a_{s}(M_{Z}) = 0.12$

Major

Wait ... is this Crazy?

Best result

```
Obtained with a_s(M_Z) \approx 0.14
```

```
\neq World Average = 0.1176 \pm 0.0020
```

Value of a_s depends on the order and scheme

MC ≈ Leading Order + LL resummation Other leading-Order extractions of $a_s \approx 0.13 - 0.14$ Effective scheme interpreted as "CMW" → 0.13; 2-loop running → 0.127; NLO → 0.12 ?

Not so crazy

Tune/measure even pQCD parameters with the actual generator.

Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to `MC scheme')

Improve \rightarrow Matching at LO and NLO

Sneak Preview: Multijet NLO Corrections with VINCIA

Hartgring, Laenen, Skands, arXiv:1303.4974

First LEP tune with NLO 3-jet corrections

LO tune: $\alpha_s(M_Z) = 0.139$ (1-loop running, MSbar)

NLO tune: $\alpha_s(M_Z) = 0.122$ (2-loop running, CMW)

Summary

Parton Shower Monte Carlos

Improve lowest-order perturbation theory by including 'most significant' corrections

Resonance decays, soft- and collinear radiation, hadronization, $\dots \rightarrow$ complete events

Coherence

→ Angular ordering or Coherent Dipoles/Antennae

Hard Wide-Angle Radiation: Matching Slicing (Q_{cut}), Subtraction (w<0), or ME Corrections **Next big step:** showers with multileg NLO corrections

MCnet Review: <u>Phys.Rept. 504 (2011) 145-233</u> PS, TASI Lectures: <u>arXiv:1207.2389</u>

MCnet Studentships

MCnet projects:

- PYTHIA (+ VINCIA)
- HERWIG
- SHERPA
- MadGraph
- Ariadne (+ DIPSY)
- Cedar (Rivet/Professor)

Activities include

- summer schools (2014: Manchester?)
- short-term studentships
- graduate students
- postdocs
- meetings (open/closed)

Monte Carlo training studentships

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!

Application rounds every 3 months.

for details go to: www.montecarlonet.org

Factorization

Fixed Order requirements: All resolved scales >> Λ_{QCD} **AND** no large hierarchies

Trivially untrue for QCD

We're colliding, and observing, hadrons \rightarrow small scales We want to consider high-scale processes \rightarrow large scale differences

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \sum_{a,b} \sum_{f} \int_{\hat{X}_{f}} f_{a}(x_{a}, Q_{i}^{2}) f_{b}(x_{b}, Q_{i}^{2}) \frac{\mathrm{d}\hat{\sigma}_{ab \to f}(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2})}{\mathrm{d}\hat{X}_{f}} D(\hat{X}_{f} \to X, Q_{i}^{2}, Q_{f}^{2})$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed: All resolved scales >> Λ_{QCD} **AND** X Infrared Safe

Jets and Showers

Infrared Safety: Jet clustering algorithms

Map event from low resolution scale (i.e., with many partons/hadrons, most of which are soft) to a higher resolution scale (with fewer, hard, jets)

Parton shower algorithms

Map a few hard partons to many softer ones

Probabilistic \rightarrow closer to nature. Not uniquely invertible by any jet algorithm^{*}

(* See "Qjets" for a probabilistic jet algorithm, <u>arXiv:1201.1914</u>) (* See "Sector Showers" for a deterministic shower, <u>arXiv:1109.3608</u>)

Matching 1: Slicing

Examples: MLM, CKKW, CKKW-L

$LO_0 \times PS_{(pT>pTcut)} +$

Std: veto shower above some p_{Tcut}

 $LO_1(pT1>pTcut) \times PS(pT<pT1)$

Highest n: veto shower above p_{Tn}

Matching 1: Slicing

+

Examples: MLM, CKKW, CKKW-L

Std: veto shower above p_{Tcut}

 $LO_1(pT1>pTcut) \times PS(pT<pT1)$

Highest n: veto shower above p_{Tn}

X+I now LO correct for hard radiation and still LL correct for soft

. . .

& Shower Approximation below

Illustrations from: PS, TASI Lectures, arXiv:1207.2389

Matching: Classic Example

W + Jets

- Number of jets in pp→W+X at the LHC From 0 (W inclusive) to W+3 jets PYTHIA includes matching up to W+1 jet + shower With ALPGEN (MLM),
- also the LO matrix elements for 2 and 3 jets are included
- But Normalization still only LO

QCD Jets

Matching not always needed.

Even at 6 jets, there is almost always at least one strongly ordered path

→ showers work!

(In W+jets, that is not the case)

But note that spin correlations between the jets will still be absent

