Hadronization \& Underlying Event

Peter Skands (CERN Theoretical Physics Dept)

Ecole Joliot Curie
Frejus, France, September - October 2013
Lecture 2 / 2

From Cartons to Pions

Here's a fast parton

Fast: It starts at a high factorization scale $\mathrm{Q}=\mathrm{Q}_{\mathrm{F}}=\mathrm{Q}_{\text {hard }}$

It showers
(bremsstrahlung)

It ends up at a low effective factorization scale $\mathrm{Q} \sim \mathrm{m}_{\rho} \sim 1 \mathrm{GeV}$

From Partons to Pions

Here's a fast parton

Fast: It starts at a high
factorization scale
$\mathrm{Q}=\mathrm{Q}_{\mathrm{F}}=\mathrm{Q}_{\text {hard }}$

It showers
(perturbative bremsstrahlung)

It ends up at a low effective factorization scale $\mathrm{Q} \sim \mathrm{m}_{\mathrm{\rho}} \sim 1 \mathrm{GeV}$

How about I just call it a hadron?
\rightarrow "Local Parton-Hadron Duality"

Parton \rightarrow Hadrons?

Early models: "Independent Fragmentation"

 Local Parton Hadron Duality (LPHD) can give useful results for inclusive quantities in collinear fragmentationMotivates a simple model:

But ...
The point of confinement is that partons are coloured Hadronization $=$ the process of colour neutralization \rightarrow Unphysical to think about independent fragmentation of a single parton into hadrons
\rightarrow Too naive to see LPHD (inclusive) as a justification for Independent Fragmentation (exclusive)
\rightarrow More physics needed

Colour Neutralization

A physical hadronization model

Should involve at least TWO partons, with opposite color charges (e.g., \mathbf{R} and anti-R)

Strong "confining" field emerges between the two charges when their separation > ~ 1 fm

Color Flow

Between which partons do confining

 potentials arise?Set of simple rules for color flow, based on large-Nc limit

$$
g \rightarrow q \bar{q}
$$

$$
\begin{gathered}
g \rightarrow g g \\
\text { eece }
\end{gathered} \rightarrow
$$

Illustrations from: P.Nason \& P.S., PDG Review on MC Event Generators, 2012

Color Flow

For an entire Cascade

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow Leading-colour approximation pretty good
(LEP measurements in WW confirm this (at least to order $10 \% \sim 1 / \mathrm{Nc}^{2}$))
Note: (much) more color getting kicked around in hadron collisions \rightarrow more later

Confinement

Potential between a quark and an antiquark as function of distance, R

Short Distances ~
"Coulomb"

Partons

Long Distances ~ Linear Potential

Quarks (and gluons) confined inside hadrons

What physical system has a linear potential?

$$
F(r) \approx \text { const }=\kappa \approx 1 \mathrm{GeV} / \mathrm{fm} \Longleftrightarrow V(r) \approx \kappa r
$$

\sim Force required to lift a 16-ton truck

From Partons to Strings

Motivates a model:
Let color field collapse into a (infinitely) narrow flux tube of uniform energy density $\mathrm{k} \sim 1 \mathrm{GeV} / \mathrm{fm}$
\rightarrow Relativistic $1+1$ dimensional worldsheet - string

String Breaks

In "unquenched" QCD

$\mathrm{g} \rightarrow \mathrm{qq} \rightarrow$ The strings would break

String Breaks:
via Quantum Tunneling

(simplified colour representation)

$$
\mathcal{P} \propto \exp \left(\frac{-m_{q}^{2}-p_{\perp}^{2}}{\kappa / \pi}\right)
$$

\rightarrow Gaussian PT spectrum
\rightarrow Heavier quarks suppressed. $\operatorname{Prob}(\mathrm{q}=\mathrm{d}, \mathrm{u}, \mathrm{s}, \mathrm{c}) \approx \mathrm{I}: \mathrm{I}: 0.2: \mid 0^{-11}$

The (Lund) String Model

Map:

- Quarks \rightarrow String Endpoints
- Gluons \rightarrow Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit area \rightarrow AREA LAW

See also Yuri's $\mathbf{2 d}^{\text {nd }}$ lecture

Gluon = kink on string, carrying energy and momentum
\rightarrow STRING EFFECT

Simple space-time picture

Details of string breaks more complicated (e.g., baryons, spin multiplets)

Fragmentation Function

Spacetime Picture

leftover string, further string breaks

How big that fraction is,

$$
z \in[0,1],
$$

is determined by the
fragmentation function,

$$
f\left(z, Q_{0}{ }^{2}\right)
$$

Left-Right Symmetry

Causality \rightarrow Left-Right Symmetry
\rightarrow Constrains form of fragmentation function!
\rightarrow Lund Symmetric Fragmentation Function

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)
$$

Small a
$a=0.9 \rightarrow$ "high-z tail"

Small b
\rightarrow "Iow-z enhancement"

Note: In principle, a can be flavour-dependent. In practice, we only distinguish between baryons and mesons

Iterative String Breaks

Causality \rightarrow May iterate from outside-in

The Length of Strings

In Space:

String tension $\approx 1 \mathrm{GeV} / \mathrm{fm} \rightarrow$ a $5-\mathrm{GeV}$ quark can travel 5 fm before all its kinetic energy is transformed to potential energy in the string.
Then it must start moving the other way. String breaks will have happened behind it \rightarrow yo-yo model of mesons

In Rapidity : $y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\frac{1}{2} \ln \left(\frac{\left(E+p_{z}\right)^{2}}{E^{2}-p_{z}^{2}}\right)$

For a pion with $\mathrm{z}=1$ along string direction
(For beam remnants, use a proton mass):

$$
y_{\max } \sim \ln \left(\frac{2 E_{q}}{m_{\pi}}\right)
$$

Note: Constant average hadron

 multiplicity per unit $y \rightarrow$ logarithmic growth of total multiplicityScaling in lightcone $p_{ \pm}=E \pm p_{z}$ (for $\mathrm{q} \overline{\mathrm{q}}$ system along z axis) implies flat central rapidity plateau + some endpoint effects:

$\left\langle n_{\mathrm{ch}}\right\rangle \approx c_{0}+c_{1} \ln E_{\mathrm{cm}}, \sim$ Poissonian multiplicity distribution

Alternative: The Cluster Model

"Preconfinement"

+ Force $\mathbf{g} \rightarrow \mathbf{q q}$ splittings at $\mathbf{Q o}_{0}$
\rightarrow high-mass q-qbar "clusters"
Isotropic 2-body decays to hadrons according to $\mathrm{PS} \approx\left(2 \mathrm{~s}_{1}+1\right)\left(2 \mathrm{~s}_{2}+1\right)\left(\mathrm{p}^{*} / \mathrm{m}\right)$

Strings and Clusters

Small strings \rightarrow clusters. Large clusters \rightarrow strings

Hadron Collisions

Do not be scared of the fallure of physical models Usually points to more interesting physics

FIG. 3. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs simple models: dashed low p_{T} only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

Hadron Collisions

FIG. 3. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs simple models: dashed low p_{T} only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

FIG. 12. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\widetilde{O}_{0}(b)$].

Soft-inclusive QCD

Image credits: E. Arenhaus \& J. Walker

What is Underlying Event ?

"Pedestal Effect"

Useful variable in hadron collisions: Rapidity
Designed to be additive under Lorentz Boosts along beam (z) direction

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)
$$

$y \rightarrow-\infty$ for $p_{z} \rightarrow-E \quad y \rightarrow 0$ for $p_{z} \rightarrow 0$

$$
y \rightarrow \infty \text { for } p_{z} \rightarrow E
$$

The "Rick Field" UE Plots

There are many UE variables.
The most important is $\left\langle\Sigma \mathrm{p}_{\mathrm{T}}\right\rangle$ in the "Transverse Region"

The Pedestal (now called the Underlying Event)

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe
Large Non-factorizable Corrections
Prediction off by $\approx 10 \%$
Truth is in the eye of the beholder:

[^0]
Physics of the Pedestal

Factorization: Subdivide Calculation

Multiple Parton Interactions go beyond existing theorems
\rightarrow perturbative short-distance physics in Underlying Event
\rightarrow Need to generalize factorization to MPI

Multiple Parton Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

How many?

Naively $\left\langle n_{2 \rightarrow 2}\left(p_{\perp \text { min }}\right)\right\rangle=\frac{\sigma_{2 \rightarrow 2}\left(p_{\perp \text { min }}\right)}{\sigma_{\text {tot }}}$
Interactions independent (naive factorization) \rightarrow Poisson

$$
\mathcal{P}_{n}=\frac{\langle n\rangle^{n}}{n!} e^{-\langle n\rangle}
$$

Real Life

Momentum conservation suppresses high-n tail + physical correlations
\rightarrow not simple product

1: A Simple Model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

$$
\underset{\text { Parton-Parton Cross Section }}{\sigma_{2 \rightarrow 2}\left(p_{\perp \min }\right)}=\langle n\rangle\left(p_{\perp \min }\right) \sigma_{\text {Hadron-Hadron Cross Section }}
$$

I. Choose $p_{T \text { min }}$ cutoff
$=$ main tuning parameter
2. Interpret $\langle n\rangle\left(p_{T \min }\right)$ as mean of Poisson distribution

Equivalent to assuming all parton-parton interactions equivalent and independent \sim each take an instantaneous "snapshot" of the proton
3. Generate n parton-parton interactions ($\mathrm{PQCD} 2 \rightarrow 2$) Veto if total beam momentum exceeded \rightarrow overall (E,p) cons
4. Add impact-parameter dependence $\rightarrow\langle n\rangle=\langle n\rangle(b) \quad$ brimar

Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : $f(x, b)=f(x) g(b)$
b distribution \propto EM form factor \rightarrow JIMMY model Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637 Constant of proportionality $=$ second main tuning parameter
5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_{T}<p_{T \text { min }}$ and require $\sigma_{\text {soft }}+\sigma_{\text {hard }}=\sigma_{\text {tot }}$
\rightarrow Herwig++ model Bähr et al, arXiv:0905.467।

2: Interleaved Evolution

< $\mathrm{p}_{\mathrm{T}}>$ vs N_{ch}

Correlations / Collective effects:
\rightarrow average rises

green
 cyan

 yellow
 Color Space
 in hadron collisions

Color Correlations

Each MPI (or cut Pomeron) exchanges color between the beams

- The colour flow determines the hadronizing string topology
- Each MPI, even when soft, is a color spark
- Final distributions crucially depend on color space

Sjöstrand \& PS, JHEP 03(2004)053

Color Correlations

Each MPI (or cut Pomeron) exchanges color between the beams

- The colour flow determines the hadronizing string topology
- Each MPI, even when soft, is a color spark
- Final distributions crucially depend on color space

Color Connections

Better theory models needed

Multiplicity $\propto \mathrm{N}_{\mathrm{MPI}}$

Color Reconnections?

Final Topic: Tuning

Theory

Experiment

Adjust this

\rightarrow Science

In Practice

"Virtual Colliders"
= Simulation Codes
Particle Physics Models, Algorithms, ...
\rightarrow Simulated Particle Collisions

Real Universe
\rightarrow Experiments \& Data
Particle Accelerators, Detectors, and Statistical Analyses
\rightarrow Published Measurements

What is Tuning?

FSR pQCD Parameters

The value of the strong coupling at the Z pole Governs overall amount of radiation

Renormalization Scheme and Scale for as 1- vs 2-loop running, MSbar / CMW scheme, $\mu_{\mathrm{R}} \sim \mathrm{p}^{2}$

Additional Matrix Elements included? At tree level / one-loop level? Using what matching scheme?

Ordering variable, coherence treatment, effective Subleading Logs $1 \rightarrow 3$ (or $2 \rightarrow 4$), recoil strategy, ...

Branching Kinematics (z definitions, local vs global momentum conservation), hard parton starting scales / phase-space cutoffs, masses, non-singular terms, ...

String Tuning

Main String Parameters

Longitudinal $F F=f(z)$
Lund Symmetric Fragmentation Function The a and b parameters

pT in string breaks

Meson Multiplets

Baryon Multiplets

Scale of string breaking process
IR cutoff and <pT> in string breaks

Mesons
Strangeness suppression, Vector/Pseudoscalar, $\eta, \eta^{\prime}, \ldots$
Baryons
Diquarks, Decuplet vs Octet, popcorn, junctions, ... ?

Min-Bias \& Underlying Event

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$
(Rutherford) scattering used for multiple parton
interactions (often called $p_{\text {то }}$) \rightarrow size of overall activity
Pedestal Rise
Proton transverse mass distribution \rightarrow difference betwen central (active) vs peripheral (less active) collisions

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction

Fragmentation Tuning

Note: use infrared-unsafe observables - sensitive to hadronization (example)

Need IR Corrections?

PYTHIA 8 (hadronization off) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad-T \rightarrow \frac{1}{2}
$$

Significant Discrepancies (>10\%)
for T < 0.05, Major <0.15, Minor <0.2, and for all values of Oblateness

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad-\quad-T-\frac{1}{2}
$$

Note: Value of Strong coupling is

$$
a_{s}\left(M_{z}\right)=0.14
$$

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

$$
T=\max _{\vec{n}}\left(\frac{\sum_{i}\left|\overrightarrow{p_{i}} \cdot \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}\right) \quad \overline{1-T \rightarrow 0} \quad \overrightarrow{-T}-\frac{1}{2}
$$

Note: Value of Strong coupling is

$$
a_{s}\left(M_{z}\right)=0.12
$$

Wait ... is this Crazy?

Best result

Obtained with $\mathrm{a}_{\mathrm{s}}\left(\mathrm{Mz}_{\mathrm{z}}\right) \approx 0.14$
\neq World Average $=0.1176 \pm 0.0020$
Value of a_{s} depends on the order and scheme
MC \approx Leading Order + LL resummation
Other leading-Order extractions of $a_{s} \approx 0.13-0.14$
Effective scheme interpreted as "CMW" $\rightarrow 0.13$;
2 -loop running $\rightarrow 0.127$; NLO $\rightarrow 0.12$?
Not so crazy
Tune/measure even pQCD parameters with the actual generator.
Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to 'MC scheme')

$$
\text { Improve } \rightarrow \text { Matching at LO and NLO }
$$

Sneak Preview:

Multijet NLO Corrections with VINCIA

Hartgring, Laenen, Skands, arXiv:1303.4974

First LEP tune with NLO 3-jet corrections

LO tune: $\alpha_{s}\left(\mathrm{M}_{z}\right)=0.139{ }_{(1-\text {-loop running, Msbar) }}$
NLO tune: $\alpha_{s}\left(\mathrm{M}_{\mathrm{z}}\right)=0.122_{(2 \text {-loop runing, } \text {, } \mathrm{mw} \text {) })}$

Summary

(Matching: Hard Wide-Angle Radiation)

Slicing: MLM, CKKW, CKKW-L (but depends on Qcut)
Subtraction : MC@NLO (but generates w<0)
ME Corrections : PYTHIA, POWHEG, VINCIA
Next big steps:
Combining multileg NLO corrections with parton showers
It's perturbation theory $=$ we should be able to solve it. Expect this for next run of LHC.
Improving the intrinsic accuracy of showers? NLL, NLC, ... ?
Non-perturbative and soft physics
Is still hard. String model remains best bet, but ~ 30 years old by now. Ripe for a revolution?
Multi-parton interactions an extremely active field, with highly interesting connections to collectivity and related physics \rightarrow stay tuned!

Many things omitted:

Random-number theory, BSM, B Physics, Beam Remnants, Elastic and Diffractive Scattering, Heavy Ions, ...

```
See also: 1) MCnet Review (long): Phys.Rept. }504\mathrm{ (2011) 145-233 and/or 2) PDG Review on Monte Carlo Event Generators, and/or PS, 4) ESHEP Lectures (short) : arXiv:1104.2863
```


MCnet Studentships

MCnet projects:

- PYTHIA (+ VINCIA)
- HERWIG
- SHERPA
- MadGraph
- Ariadne (+ DIPSY)
- Cedar (Rivet/Professor)

Activities include

- summer schools (2014: Manchester?)
- short-term studentships
- graduate students
- postdocs
- meetings (open/closed)

Monte Carlo

 training studentships

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!
Application rounds every 3 months.

Come to Australia

[^0]: R. Field: "See, I told you!" Y. Gehrstein: "they have to fudge it again"

