Hadronization & Underlying Event Peter Skands (CERN Theoretical Physics Dept)

Ecole Joliot Curie Frejus, France, September - October 2013

Lecture 2 / 2

From Partons to Pions

Here's a fast parton

From Partons to Pions

Here's a fast parton

How about I just call it a hadron?

→ "Local Parton-Hadron Duality"

Parton → Hadrons?

Early models: "Independent Fragmentation"

Local Parton Hadron Duality (LPHD) can give useful results for **inclusive** quantities in collinear fragmentation

Motivates a simple model:

But ...

- The point of confinement is that partons are coloured
- Hadronization = the process of colour neutralization
 - \rightarrow Unphysical to think about independent fragmentation of a single parton into hadrons
 - → Too naive to see LPHD (inclusive) as a justification for Independent Fragmentation (exclusive)
 - → More physics needed

Colour Neutralization

A physical hadronization model

Should involve at least TWO partons, with opposite color charges (e.g., **R** and **anti-R**)

Strong "confining" field emerges between the two charges when their separation > $\sim 1 \text{fm}$

Color Flow

Between which partons do confining potentials arise?

Set of simple rules for color flow, based on large- N_C limit

(Never Twice Same Color: true up to $O(1/N_c^2)$)

Illustrations from: P.Nason & P.S., PDG Review on *MC Event Generators*, 2012

Color Flow

For an entire Cascade

Coherence of pQCD cascades → not much "overlap" between strings → Leading-colour approximation pretty good

(LEP measurements in WW confirm this (at least to order 10% ~ 1/Nc²))

Note: (much) more color getting kicked around in hadron collisions \rightarrow more later

Confinement

Potential between a quark and an antiquark as function of distance, R

Long Distances ~ Linear Potential

Quarks (and gluons) confined inside hadrons

What physical system has a linear potential?

 $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV/fm} \iff V(r) \approx \kappa r$

~ Force required to lift a 16-ton truck

From Partons to Strings

Motivates a model:

Let color field collapse into a (infinitely) narrow flux tube of uniform energy density $\kappa \sim 1~\text{GeV}$ / fm

→ Relativistic 1+1 dimensional worldsheet – string

<u>Pedagogical Review:</u> B. Andersson, *The Lund model.* Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 1997.

String Breaks

The (Lund) String Model

Map:

- Quarks → String Endpoints
- Gluons → Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit area → AREA LAW

→ STRING EFFECT

See also Yuri's 2nd lecture

Simple space-time picture

Details of string breaks more complicated (e.g., baryons, spin multiplets)

Fragmentation Function

Left-Right Symmetry

Causality → Left-Right Symmetry

→ Constrains form of fragmentation function!

→ Lund Symmetric Fragmentation Function

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(-\frac{b\left(m_h^2 + p_{\perp h}^2\right)}{z}\right)$$

Note: In principle, *a* can be flavour-dependent. In practice, we only distinguish between baryons and mesons

Iterative String Breaks

Causality → May iterate from outside-in

The Length of Strings

In Space:

String tension ≈ 1 GeV/fm \rightarrow a 5-GeV quark can travel 5 fm before all its kinetic energy is transformed to potential energy in the string. Then it must start moving the other way. String breaks will have happened behind it \rightarrow yo-yo model of mesons

In Rapidity :
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) = \frac{1}{2} \ln \left(\frac{(E + p_z)^2}{E^2 - p_z^2} \right)$$

For a pion with z=1 along string direction (For beam remnants, use a proton mass):

$$y_{\rm max} \sim \ln\left(\frac{2E_q}{m_\pi}\right)$$

Note: Constant average hadron multiplicity per unit y → logarithmic growth of total multiplicity Scaling in lightcone $p_{\pm} = E \pm p_z$ (for $q\overline{q}$ system along z axis) implies flat central rapidity plateau + some endpoint effects:

 $\langle n_{\rm Ch} \rangle \approx c_0 + c_1 \ln E_{\rm Cm}$, ~ Poissonian multiplicity distribution

Alternative: The Cluster Model

Strings and Clusters

Small strings \rightarrow clusters. Large clusters \rightarrow strings

Hadron Collisions

Do not be scared of the failure of physical models Usually points to more interesting physics

FIG. 3. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs simple models: dashed low p_T only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

Hadron Collisions

FIG. 12. Charged-multiplicity distribution at 540 GeV, UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\tilde{O}_0(b)$].

Sjöstrand & v. Zijl, Phys.Rev.D36(1987)2019

Soft-inclusive QCD

Image credits: E. Arenhaus & J. Walker

What is Underlying Event ?

Useful variable in hadron collisions: Rapidity

Designed to be additive
under Lorentz Boosts along
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

beam (z) direction

 $y \to -\infty$ for $p_z \to -E$ $y \to 0$ for $p_z \to 0$ $y \to \infty$ for $p_z \to E$

Illustrations by T. Sjöstrand

The "Rick Field" UE Plots

(the same Field as in Field-Feynman)

There are many UE variables. The most important is $\langle \Sigma p_T \rangle$ in the "Transverse Region"

The Pedestal (now called the Underlying Event)

LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Truth is in the eye of the beholder:

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

R. Field: "See, I told you!" Y. Gehrstein: "they have to fudge it again"

"Toward"

tansiers

Physics of the Pedestal

Factorization: Subdivide Calculation

Multiple Parton Interactions go beyond existing theorems

- → perturbative short-distance physics in Underlying Event
- \rightarrow Need to generalize factorization to MPI

Multiple Parton Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

Earliest MC model ("old" PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Lesson from bremsstrahlung in pQCD: divergences → fixed-order breaks down Perturbation theory still ok, with resummation <u>(unitarity)</u>

> → Resum dijets? Yes → MPI!

How many?

Naively
$$\langle n_{2\to 2}(p_{\perp \min}) \rangle = \frac{\sigma_{2\to 2}(p_{\perp \min})}{\sigma_{tot}}$$

Interactions independent (naive factorization) \rightarrow Poisson

$$\mathcal{P}_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

Real Life

Momentum conservation suppresses high-n tail + physical correlations → not simple product

1: A Simple Model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

$$\sigma_{2\to 2}(p_{\perp \min}) = \langle n \rangle(p_{\perp \min}) \sigma_{\text{tot}}$$

Parton-Parton Cross Section

Hadron-Hadron Cross Section

I. Choose *p*_{*T*min} cutoff

= main tuning parameter

- 2. Interpret $< n > (p_{Tmin})$ as mean of Poisson distribution Equivalent to assuming all parton-parton interactions equivalent and independent ~ each take an instantaneous "snapshot" of the proton
- 3. Generate *n* parton-parton interactions (pQCD 2 \rightarrow 2) Veto if total beam momentum exceeded \rightarrow overall (E,p) cons
- 4. Add impact-parameter dependence $\rightarrow \langle n \rangle = \langle n \rangle(b)$ Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : f(x,b) = f(x)g(b) b distribution \propto EM form factor \rightarrow JIMMY model Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637 Constant of proportionality = second main tuning parameter
- 5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_T < p_{T\min}$ and require $\sigma_{soft} + \sigma_{hard} = \sigma_{tot}$ \rightarrow Herwig++ model Bähr et al, arXiv:0905.4671

2: Interleaved Evolution

Sjöstrand, P.S., JHEP 0403 (2004) 053; EPJ C39 (2005) 129

Add exclusivity progressively by evolving everything downwards. p_\perp $\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} =$ $p_{\perp \max}$ p_{\perp}^2 $\left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{JI}}}{\mathrm{d}p}\right) \times$ Fixed order (B)SM evolution $2 \rightarrow 2$ $p_{\perp 1}$ matrix elements Parton Showers $\exp\left(-\int_{p_{\perp}}^{p_{\perp}i-1}\left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p'_{\perp}}+\sum\frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p'_{\perp}}+\sum\frac{\mathrm{d}\mathcal{P}_{\mathrm{JI}}}{\mathrm{d}p'_{\perp}}\right)\mathrm{d}p'_{\perp}\right)$ ISR (matched to 00000 $p_{\perp 1}$ further Matrix interleaved Elements) mult. int. → Underlying Event multiparton ISR (note: interactions correllated in colour: PDFs derived 00000 from sum rules hadronization not independent) interleaved 00000 mult. int. \sim "Finegraining" **ISR** 00000 00000 00000 perturbative "intertwining"? interleaved \rightarrow correlations between Intertwined? mult int. $p_{\perp 4}$ all perturbative activity ISR 00000 Beam remnants at successively smaller scales Fermi motion / $p_{\perp \min}$ primordial k_T int. number 2 3

pt> vs Nch

Independent Particle Production:

 \rightarrow averages stay the same

Correlations / Collective effects:

 \rightarrow average rises

Extrapolation to high multiplicity ~ UE

Average particles slightly too hard

 \rightarrow Too much energy, or energy distributed on too few particles

~ OK?

Average particles slightly too soft

 \rightarrow Too little energy, or energy distributed on too many particles

Evolution of other distributions with N_{ch} also interesting: e.g., $< p_T > (N_{ch})$ for identified particles, strangeness & baryon ratios, 2P correlations, ...

Color Space in hadron collisions

Color Correlations

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions <u>crucially</u> depend on color space

Different models

Color Correlations

Each MPI (or cut Pomeron) exchanges color between the beams

The colour flow determines the hadronizing string topology

- Each MPI, even when soft, is a color spark
- Final distributions <u>crucially</u> depend on color space

Different models

Color Connections

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)

Better theory models needed

Final Topic: Tuning

Theory

Experiment

Adjust this to agree with this

→ Science

In Practice

- "Virtual Colliders" = Simulation Codes
- Particle Physics Models, Algorithms, ...
- → Simulated Particle Collisions

Real Universe → Experiments & Data

Particle Accelerators, Detectors, and Statistical Analyses

→ Published Measurements

What is Tuning?

FSR pQCD Parameters

a_s(m_Z)

The value of the strong coupling at the Z pole Governs overall amount of radiation

Renormalization Scheme and Scale for as

1- vs 2-loop running, MSbar / CMW scheme, $\mu_R \sim p_T{}^2$

					_	
- M	2	÷	C	h	in	
11	a	L	L			y
						_

Additional Matrix Elements included?

At tree level / one-loop level? Using what matching scheme?

Ordering variable, coherence treatment, effective Subleading Logs $1 \rightarrow 3$ (or $2 \rightarrow 4$), recoil strategy, ...

Branching Kinematics (z definitions, local vs global momentum conservation), hard parton starting scales / phase-space cutoffs, masses, non-singular terms, ...

String Tuning

Main String Parameters

Longitudinal FF = f(z)

Lund Symmetric Fragmentation Function

The a and b parameters

pT in string breaks

Scale of string breaking process

IR cutoff and $< p_T >$ in string breaks

Meson Multiplets

Mesons

Strangeness suppression, Vector/Pseudoscalar, η , η' , ...

15 10 05

Baryon Multiplets

Baryons

Diquarks, Decuplet vs Octet, popcorn, junctions, ... ?

Min-Bias & Underlying Event

Main IR Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow size of overall activity

Pedestal Rise

Proton transverse mass distribution → difference betwen central (active) vs peripheral (less active) collisions

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction

Fragmentation Tuning

Note: use infrared-unsafe observables - sensitive to hadronization (example)

Need IR Corrections?

PYTHIA 8 (hadronization off) vs LEP: Thrust

Significant Discrepancies (>10%)

for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

Need IR Corrections?

PYTHIA 8 (hadronization on) vs LEP: Thrust

Note: Value of Strong coupling is $a_s(M_Z) = 0.14$

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

Note: Value of Strong coupling is $a_{s}(M_{Z}) = 0.12$

Major

Wait ... is this Crazy?

Best result

```
Obtained with a_s(M_Z) \approx 0.14
```

```
\neq World Average = 0.1176 \pm 0.0020
```

Value of a_s depends on the order and scheme

MC ≈ Leading Order + LL resummation Other leading-Order extractions of $a_s \approx 0.13 - 0.14$ Effective scheme interpreted as "CMW" → 0.13; 2-loop running → 0.127; NLO → 0.12 ?

Not so crazy

Tune/measure even pQCD parameters with the actual generator.

Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to `MC scheme')

Improve \rightarrow Matching at LO and NLO

Sneak Preview: Multijet NLO Corrections with VINCIA

Hartgring, Laenen, Skands, arXiv:1303.4974

First LEP tune with NLO 3-jet corrections

LO tune: $\alpha_s(M_Z) = 0.139$ (1-loop running, MSbar)

NLO tune: $\alpha_s(M_Z) = 0.122$ (2-loop running, CMW)

Summary

(Matching: Hard Wide-Angle Radiation)

Slicing : MLM, CKKW, CKKW-L (but depends on Qcut)

Subtraction : MC@NLO (but generates w<0)

ME Corrections : PYTHIA, POWHEG, VINCIA

Next big steps:

Combining multileg NLO corrections with parton showers It's perturbation theory = we should be able to solve it. Expect this for next run of LHC. Improving the intrinsic accuracy of showers? NLL, NLC, ... ?

Non-perturbative and soft physics

Is still hard. String model remains best bet, but \sim 30 years old by now. Ripe for a revolution?

Multi-parton interactions an extremely active field, with highly interesting connections to collectivity and related physics \rightarrow stay tuned!

Many things omitted:

Random-number theory, BSM, B Physics, Beam Remnants, Elastic and Diffractive Scattering, Heavy Ions, ...

See also: **1)** MCnet Review (long): <u>Phys.Rept. 504 (2011) 145-233</u> and/or **2)** PDG Review on Monte Carlo Event Generators, and/or PS, **4)** ESHEP Lectures (short): <u>arXiv:1104.2863</u>

MCnet Studentships

MCnet projects:

- PYTHIA (+ VINCIA)
- HERWIG
- SHERPA
- MadGraph
- Ariadne (+ DIPSY)
- Cedar (Rivet/Professor)

Activities include

- graduate students
- postdocs
- meetings (open/closed)

Monte Carlo

training studentships

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!

Application rounds every 3 months.

for details go to: www.montecarlonet.org

Come to Australia

D

Establishing a new group in Melbo Working on PYTHIA & VINCIA NLO Event Generators Precision LHC phenomenology & soft physics Support LHC experiments, astro-particle community, and future accelerators Outreach and Citizen Science

Oct 2014 → Monash University Melbourne, Australia