Physics and Generator Tuning

Peter Skands (CERN Theoretical Physics Dept)

CMS Physics Comparisons and Generator Tunes Meeting October 2013, CERN

Theory

Experiment

Adjust this to agree with this

Theory

Experiment

Adjust this to agree with this

→ Science

In Practice

"Virtual Colliders" = Simulation Codes

Particle Physics Models, Simplifications, Algorithms, ...

→ Simulated Particle Collisions

Real Universe → Experiments & Data

Particle Accelerators, Detectors, Statistical Analyses, Calibrations

→ Published Measurements

Resources

Data Preservation: <u>HEPDATA</u>

Online database of experimental results Please make sure published results make it there

Analysis Preservation: <u>RIVET</u>

Large library of encoded analyses + data comparisons Main analysis & constraint package for event generators All your analysis are belong to RIVET

Updated validation plots: <u>MCPLOTS.CERN.CH</u>

Online plots made from Rivet analyses Want to help? Connect to Test4Theory (LHC@home 2.0)

Reproducible tuning: <u>PROFESSOR</u>

Automated tuning (& more)

(Test4Theory)

LHC@home 2.0 Test4Theory volunteers' machines seen during the past 24 hours (7011 machines overall)

Menu

→ Front Page → LHC@home 2.0 >>

- → Generator Versions
- → Generator Validation
- → Update History
- → User Manual and Reference

÷

Analysis filter:

Latest analyses

Z (Drell-Yan)

- → Jet Multiplicities
- → 1/σdσ(Z)/dφ^{*}n
- $\rightarrow d\sigma(Z)/dpTZ$
- $\rightarrow 1/\sigma d\sigma(Z)/dpTZ$

W

- → Charge asymmetry vs η
- → Charge asymmetry vs N_{iet}
- → dσ(jet)/dpT
- → Jet Multiplicities

Top (MC only)

- → Δφ (ttbar)
- → ∆y (ttbar)
- → |∆y| (ttbar)
- → M (ttbar)
- pT (ttbar) Cross sections
- \rightarrow y (ttbar)
- → Asymmetry
- → Individual tops

Bottom

Jets

- → n Distributions
- → pT Distributions
- → Cross sections

Underlying Event : TRNS : Σ(pT) vs pT1

Generator Group: General-Purpose MCs Soft-Inclusive MCs Alpgen Herwig++ Pythia 6 Pythia 8 Sherpa Vincia Epos Phojet Custom

Subgroup:

Defaults LHC Tunes C++ Generators Tevatron vs LHC tunes

pp @ 7000 GeV

- 0 -

Herwig++ (Def)

- Explicit tables of data & MC points
- Run cards for each generator
- Link to experimental reference paper
- Steering file for plotting program
- (Will also add link to RIVET analysis)

Current Methods

Manual Tunes

Tuning done by hand/eye (few parameters and observables at a time) Common sense (and experience) → subjective judgement of importance of each observable, and tails vs averages Theoretically motivated uncertainty variations can be included

Current Methods

Manual Tunes

Tuning done by hand/eye (few parameters and observables at a time) Common sense (and experience) → subjective judgement of importance of each observable, and tails vs averages Theoretically motivated uncertainty variations can be included

Automated Tunes (Professor, Profit?)

Sense and experience encoded as elaborate sets of weights + "sensible" parameter ranges → faster & "easier" than manual

Does not relieve you from critical judgement

Are/were ranges, weights, and observables included indeed "sensible"? Are tuning interpolations looking stable and convergent? Are there strong correlations / flat directions? Do some parameters end up at the end of their physical ranges?

"Data-driven" uncertainty variations do not reflect intrinsic theory uncertainties (cf PDF "errors"!) → Systematic mis-tuning?

Quo Vadis?

Not only central tunes

*) This is intended as a cultural reference, not a religious one

- Your experimental (and other user-end) colleagues are relying on you for **serious** uncertainty estimates
- Modeling uncertainties are intrinsically non-universal. Including data uncertainties only \rightarrow lower bound (cf PDFs)
- A **serious** uncertainty estimate includes some modeling variation (irrespectively of, and in addition to, what data allows)

Quo Vadis?

Not only central tunes

*) This is intended as a cultural reference, not a religious one

Your experimental (and other user-end) colleagues are relying on you for **serious** uncertainty estimates

Modeling uncertainties are intrinsically non-universal. Including data uncertainties only \rightarrow lower bound (cf PDFs)

A **serious** uncertainty estimate includes some modeling variation (irrespectively of, and in addition to, what data allows)

Not only global tunes

Your theoretical (MC author) colleagues are relying on you for stringent tests of the **underlying physics** models, not just 'best fits' (which may obscure "tensions")

Tuning can be done to several complementary data sets.

All give same parameters \rightarrow universality ok \rightarrow model ok Some give different parameters \rightarrow universality is breaking down \rightarrow can point to where \rightarrow feedback to authors \rightarrow improved models

Example: as

Theory: default is factor 2 μ_R variation

 \rightarrow lots/less of FSR! Use this to define a theory uncertainty associated with a_s (e.g., done in Perugia tunes)

Data-driven (expect smaller?): define variations by ~ 2sigma consistent with 3-jet observables

Use as cross check on theory uncertainty. How much variation does data actually allow (for the included observables)?

Decide (if you dare) to reduce nominal factor 2, keeping in mind that a larger theory uncertainty is still needed to evaluate uncertainty on extrapolating to other observables/processes.

Bonus! Can re-use the data-driven ones ...

Retune string parameters, using the data-driven large/small as

- \rightarrow hadronization variations for use with central a_s
 - → can add more systematic "mistunings" to explore uncertainty envelope better

Global Tunes vs Mode Minut real ests

FSR pQCD Parameters

a_s(m_Z)

The value of the strong coupling at the Z pole

Governs overall amount of radiation

Renormalization Scheme and Scale for as

1- vs 2-loop running, MSbar / CMW scheme, $\mu_R \sim p_T^2$

Matching

Subleading Logs

FSR pQCD Parameters

a_s(m_Z)

The value of the strong coupling at the Z pole Governs overall amount of radiation

Renormalization Scheme and Scale for as

1- vs 2-loop running, MSbar / CMW scheme, $\mu_R \sim p_T^2$

Matching

Additional Matrix Elements included?

At tree level / one-loop level? Using what matching scheme?

Subleading Logs

FSR pQCD Parameters

a_s(m_Z)

The value of the strong coupling at the Z pole Governs overall amount of radiation

Renormalization Scheme and Scale for as

1- vs 2-loop running, MSbar / CMW scheme, $\mu_R \sim p_T{}^2$

M	a	tc	hi	n	n
	u	cc			Э

Additional Matrix Elements included?

At tree level / one-loop level? Using what matching scheme?

Ordering variable, coherence treatment, effective Subleading Logs $1 \rightarrow 3$ (or $2 \rightarrow 4$), recoil strategy, ...

Branching Kinematics (z definitions, local vs global momentum conservation), hard parton starting scales / phase-space cutoffs, masses, non-singular terms, ...

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

Note: Value of Strong coupling is $a_s(M_Z) = 0.12$

Value of Strong Coupling

PYTHIA 8 (hadronization on) vs LEP: Thrust

Note: Value of Strong coupling is $a_s(M_Z) = 0.14$

Best tuning result (and default in PYTHIA)

Obtained with $a_s(M_Z) \approx 0.14$

 \neq World Average = 0.1176 \pm 0.0020

Best tuning result (and default in PYTHIA)

Obtained with $a_s(M_Z) \approx 0.14$

 \neq World Average = 0.1176 \pm 0.0020

Value of a_s depends on the order and scheme

MC ≈ Leading Order + LL resummation Other LO extractions of $a_s \approx 0.13 - 0.14$ Effective scheme interpreted as "CMW" → 0.13; 2-loop running → 0.127; NLO → 0.12 ?

Best tuning result (and default in PYTHIA)

Obtained with $a_s(M_Z) \approx 0.14$

 \neq World Average = 0.1176 \pm 0.0020

Value of a_s depends on the order and scheme

MC ≈ Leading Order + LL resummation Other LO extractions of $a_s \approx 0.13 - 0.14$ Effective scheme interpreted as "CMW" → 0.13; 2-loop running → 0.127; NLO → 0.12 ?

Not so crazy

Tune/measure even pQCD parameters with the actual generator.

Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to `MC scheme')

Best tuning result (and default in PYTHIA)

Obtained with $a_s(M_Z) \approx 0.14$

 \neq World Average = 0.1176 \pm 0.0020

Value of a_s depends on the order and scheme

MC ≈ Leading Order + LL resummation Other LO extractions of $a_s \approx 0.13 - 0.14$ Effective scheme interpreted as "CMW" → 0.13; 2-loop running → 0.127; NLO → 0.12 ?

Not so crazy

Tune/measure even pQCD parameters with the actual generator.

Sanity check = consistency with other determinations at a similar formal order, within the uncertainty at that order (including a CMW-like scheme redefinition to go to `MC scheme')

Improve \rightarrow Matching at LO and NLO

Sneak Preview: VINCIA: Multijet NLO Corrections

Hartgring, Laenen, Skands, arXiv:1303.4974

First LEP tune with NLO 3-jet corrections

LO tune: $\alpha_s(M_Z) = 0.139$ (1-loop running, MSbar)

NLO tune: $\alpha_s(M_Z) = 0.122$ (2-loop running, CMW)

Sneak Preview: VINCIA: Multijet NLO Corrections

Hartgring, Laenen, Skands, <u>arXiv:1303.4974</u>

First LEP tune with NLO 3-jet corrections

LO tune: $\alpha_s(M_Z) = 0.139$ (1-loop running, MSbar)

NLO tune: $\alpha_s(M_Z) = 0.122$ (2-loop running, CMW)

Observable Ranges

Classic example:

Thrust distribution at LEP

Herwig++ (unmatched) generates too many hard 4-jet events

Can attempt to tune away (if possible)

Do not sacrifice agreement in logarithmic region for arm-twisting tuning in hard region

Or choose to not use problematic region for Herwig++

Problematic for universal approach to tuning?

In any case, must be *aware*, and must make and report a **decision**

Main String Parameters

Longitudinal FF = f(z)

Lund Symmetric Fragmentation Function

15 10 05

The a and b parameters

pT in string breaks

Scale of string breaking process

IR cutoff and $< p_T >$ in string breaks

Meson Multiplets

Baryon Multiplets

Main String Parameters

Longitudinal FF = f(z)

Lund Symmetric Fragmentation Function

The a and b parameters

pT in string breaks

Scale of string breaking process

IR cutoff and $< p_T >$ in string breaks

Meson Multiplets

Mesons

Strangeness suppression, Vector/Pseudoscalar, η , η' , ...

15 19 05

Baryon Multiplets

Main String Parameters

Longitudinal FF = f(z)

Lund Symmetric Fragmentation Function

The a and b parameters

pT in string breaks

Scale of string breaking process

IR cutoff and $< p_T >$ in string breaks

Meson Multiplets

Mesons

Strangeness suppression, Vector/Pseudoscalar, η , η' , ...

15 10 05

Baryon Multiplets

Baryons

Diquarks, Decuplet vs Octet, popcorn, junctions, ... ?

Main String Parameters

Longitudinal FF = f(z)

Lund Symmetric Fragmentation Function

The a and b parameters

pT in string breaks

Scale of string breaking process

IR cutoff and $< p_T >$ in string breaks

Meson Multiplets

Mesons

Strangeness suppression, Vector/Pseudoscalar, η , η' , ...

15 10 05

Baryon Multiplets

Baryons

Diquarks, Decuplet vs Octet, popcorn, junctions, ... ?

(or equivalent parameters for Cluster Model)

Left-Right Symmetry

Causality → Left-Right Symmetry

→ Constrains form of fragmentation function!

→ Lund Symmetric Fragmentation Function

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(-\frac{b\left(m_h^2 + p_{\perp h}^2\right)}{z}\right)$$

Note: In principle, *a* can be flavour-dependent. In practice, we only distinguish between baryons and mesons

Hadronization Tuning

Note: use infrared-unsafe observables - sensitive to hadronization (example)

Observable Ranges: Hadronization

PYTHIA 8 (hadronization off) vs LEP: Thrust

for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

Observable Ranges: Hadronization

PYTHIA 8 (hadronization off) vs LEP: Thrust

for T < 0.05, Major < 0.15, Minor < 0.2, and for all values of Oblateness

+ cross checks: different eCM energies (HAD and FSR scale differently)

Identified Particles

S₁/S₀, B/M, B_{3/2}/B_{1/2}, strange/unstrange, Heavy

Compare with what you see at LHC Correlate with what you see at LHC

Can variations within uncertainties explain differences? Or not?

Initial-State Radiaton

Main ISR Parameters

as

Value and running of the strong coupling

Governs overall amount of radiation (cf FSR)

Size of Phase Space

Starting scale & Initial-Final interference

Relation between Q_{PS} and Q_F (vetoed showers? cf matching)

I-F colour-flow interference effects (cf ttbar asym) & interleaving

Matching

"Primordial kT"

Initial-State Radiaton

Main ISR Parameters

as

Value and running of the strong coupling

Governs overall amount of radiation (cf FSR)

Size of Phase Space

Starting scale & Initial-Final interference

Relation between Q_{PS} and Q_F (vetoed showers? cf matching) I-F colour-flow interference effects (cf ttbar asym) & interleaving

Matching

Additional Matrix Elements included?

At tree level / one-loop level? What matching scheme?

"Primordial kT"

Initial-State Radiaton

Main ISR Parameters

a_s

Value and running of the strong coupling

Governs overall amount of radiation (cf FSR)

Size of Phase Space

Starting scale & Initial-Final interference

Relation between Q_{PS} and Q_F (vetoed showers? cf matching) I-F colour-flow interference effects (cf ttbar asym) & interleaving

Matching

Additional Matrix Elements included?

At tree level / one-loop level? What matching scheme?

"Primordial kT"

A small additional amount of "unresolved" kT Fermi motion + unresolved ISR emissions + low-x effects?

Main UE/MB Parameters

Number of MPI

Pedestal Rise

Strings per Interaction

Main UE/MB Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{TO}) \rightarrow overall amount of energy in UE

Pedestal Rise

Strings per Interaction

Main UE/MB Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow overall amount of energy in UE

Pedestal Rise

Proton transverse mass distribution \rightarrow difference betwen central (active) vs peripheral (less active) collisions. Affects fluctuations & UE/MB ratios.

Strings per Interaction

Main UE/MB Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow overall amount of energy in UE

Pedestal Rise

Proton transverse mass distribution \rightarrow difference betwen central (active) vs peripheral (less active) collisions. Affects fluctuations & UE/MB ratios.

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction \rightarrow can allow more or less MPI

Main UE/MB Parameters

Number of MPI

Infrared Regularization scale for the QCD $2 \rightarrow 2$ (Rutherford) scattering used for multiple parton interactions (often called p_{T0}) \rightarrow overall amount of energy in UE

Pedestal Rise

Proton transverse mass distribution \rightarrow difference betwen central (active) vs peripheral (less active) collisions. Affects fluctuations & UE/MB ratios.

Strings per Interaction

Color correlations between multiple-parton-interaction systems \rightarrow shorter or longer strings \rightarrow less or more hadrons per interaction \rightarrow can allow more or less MPI

Beam Remnant

Beam remnant parameters → forward fragmentation, remnant blowup, baryon transport

Why dN/dn is useless (by itself)

Can get <N> right with completely wrong models. Need RMS at least.

"Toward"

Transvers

ransver s

UE - LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Sum(pT) Density (TRANS)

"Toward"

ransver s

Transvers

UE - LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

UE - LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

"Toward"

ransver s

Transvers

UE - LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

R. Field: "See, I told you!"

"Toward"

Transvers

ran sver s

"Toward"

Transvers

ran sver s

UE - LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

R. Field: "See, I told you!" Y. Gehrstein: "they have to fudge it again"

"Toward"

Transvers

ran sver s

UE - LHC from 900 to 7000 GeV - ATLAS

Track Density (TRANS)

Not Infrared Safe Large Non-factorizable Corrections Prediction off by $\approx 10\%$

Sum(pT) Density (TRANS)

(more) Infrared Safe Large Non-factorizable Corrections Prediction off by < 10%

Two beholders: R. Field: "See, I told you!" Y. Gehrstein: "they have to fudge it again"

Color Connections

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)

Better theory models needed

Color Reconnections?

E.g.,

Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364) Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)

Better theory models needed

Notes on Diffraction

1. Fragmentation in diffraction

Low mass diffr modeled as fragmenting string (parameters from LEP)

But LEP starts with FSR \rightarrow Q_{had} \rightarrow string-frag = f(z,Q_{had})

In diffraction, no equivalent definition of Q_{had}

Do LEP tunes work for diffraction? At all masses? Depends on Q_{had}? Make direct (in situ) checks!

Observables:

Nch and x spectra, event shapes (e.g., transverse Thrust), ID-paricle ratios (Baryons, s, c, b)

How high masses can be reached with decent rates? (100k events, 10k, 1k?) (and what kind of luminosity conditions are required / prohibitive?)

Outcome: more reliable fragmentation models, tunes for diffraction

2. MPI in diffraction.

Expected to increase multiplicity in diffractive (jet) events Pythia 8 incorporates a model, so far largely unconstrained. Main parameter = σ_{Pp}

UE style analyses in diffractive jets (measuring transverse PTsum and Nch, average and rms, wrt diffractive jet pt, etc).

3. Colour reconnections.

How to separate "genuine" diffraction from accidental gaps created by CR?

On Physical Observables and MC "truth"

N. Bohr:

Only physical observables are quantum mechanically meaningful (it does not make sense to ask which slit the photon went through) QFT generalization: it does not make sense to ask which quantum path led to the given event

Tevatron example:

Measurement of the pT of the "Z boson" (classified according to "truth" in an MC model.)

Really, observed dimuon system (including some collinear photons)

CMS example:

Measurement of Non-Single Diffractive (NSD) events (in oldest measurements, classified according to MC "truth")

Really, events with large rapidity gap and one surviving proton

Note: please tell us which of the existing min-bias / NSD CMS analyses in Rivet use the old (unphysical) definition (to be compared with MC with SD switched off) and which use the new observable definition (to be compared to all-inelastic MC, since they include an explicit trigger/cut to single out NSD) - currently we don't know, so don't dare use.

Summary

Not only central tunes

*) This is intended as a cultural reference, not a religious one

Your experimental (and other user-end) colleagues are relying on you for **serious** uncertainty estimates Must includes some modeling variation

Not only global tunes

Your theoretical (MC author) colleagues are relying on you for stringent tests of the **underlying physics** models, not just 'best fits' (which may obscure "tensions")

Tuning & Matching → Matching & Tuning

Step 1 (now): tune first, match later. Study change in χ^2 on tuning distributions after matching. Bad? Or not bad? Step 2: match first, tune later. (Requires tuning a

matched generator, so need fast matching strategies.)

MCnet Studentships

MCnet projects:

- PYTHIA (+ VINCIA)
- HERWIG
- SHERPA
- MadGraph
- Ariadne (+ DIPSY)
- Cedar (Rivet/Professor)

Activities include

- graduate students
- postdocs
- meetings (open/closed)

Monte Carlo

training studentships

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!

Application rounds every 3 months.

for details go to: www.montecarlonet.org

Come to Australia

D

Establishing a new group in Melbourne Working on PYTHIA & VINCIA NLO Event Generators Precision LHC phenomenology & soft physics Support LHC experiments, astro-particle community, and future accelerators Outreach and Citizen Science

Oct 2014 → Monash University Melbourne, Australia