## Solving the LHC



Peter Skands (CERN TH)

## Why?



+ huge amount of other physics studies:
\# of journal papers:
144 ATLAS, 116 CMS, 51 LHCb, 27 ALICE

Some of these are already, or will ultimately be, theory limited

Precision = Clarity, in our vision of the Terascale
Searching towards lower cross sections, the game gets harder

+ Intense scrutiny (after discovery) requires high precision


## Theory task: invest in precision

This talk: a new formalism for highly accurate colliderphysics predictions, and future perspectives

## Fixed Order Perturbation Theory:

Problem: limited orders

## Parton Showers:

Problem: limited precision
"Matching": Best of both Worlds?
Problem: stitched together, slow
Markovian Perturbation Theory
$\rightarrow$ Infinite orders, high precision, fast

## Bremsstrahlung



A
The harder they get kicked, the harder the fluctations that continue to become strahlung

## Bremsstrahlung

Most bremsstrahlung is emitted by particles that are almost on shell

Divergent propagators $\rightarrow$ Bad fixed-order convergence (would need very high orders to get reliable answer)

+ Would be infinitely slow to carry out separate phasespace integrations for $N, N+1$, $N+2$, etc ...



## Jets $=$ Fractals

Most bremsstrahlung is driven by Divergent propagators $\rightarrow$ simple structure

## Gauge amplitudes factorize

 in singular limits ( $\rightarrow$ universal "conformal" or "fractal" structure)

Partons ab
$\rightarrow$ collinear:

$$
\mathrm{P}(\mathrm{z})=\text { Altarelli-Parisi splitting kernels, with } \mathrm{z}=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right)
$$

$$
\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

Gluon j
$\rightarrow$ soft:

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

+ scaling violation: $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)$

Can apply this many times
$\rightarrow$ nested factorizations

## Divide and Conquer

Factorization $\rightarrow$ Split the problem into many (nested) pieces

+ Quantum mechanics $\rightarrow$ Probabilities $\rightarrow$ Random Numbers

$$
\mathcal{P}_{\text {event }}=\mathcal{P}_{\text {hard }} \otimes \mathcal{P}_{\text {dec }} \otimes \mathcal{P}_{\text {ISR }} \otimes \mathcal{P}_{\text {FSR }} \otimes \mathcal{P}_{\text {MPI }} \otimes \mathcal{P}_{\text {Had }} \otimes \ldots
$$



Hard Process \& Decays:
Use (N)LO matrix elements
$\rightarrow$ Sets "hard" resolution scale for process: Qmax
ISR \& FSR (Initial \& Final-State Radiation):
Altarelli-Parisi equations $\rightarrow$ differential evolution, $\mathrm{dP} / \mathrm{dQ}^{2}$, as function of resolution scale; run from Qmax to $\sim 1 \mathrm{GeV}$ (More later)


MPI (Multi-Parton Interactions)
Additional (soft) parton-parton interactions: LO matrix elements
$\rightarrow$ Additional (soft) "Underlying-Event" activity (Not the topic for today)

## Hadronization

Non-perturbative model of color-singlet parton systems $\rightarrow$ hadrons

## Last Ingredient: Loops

PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

## Unitarity (KLN):

Singular structure at loop level must be equal and opposite to tree level

Kinoshita-Lee-Nauenberg:
Loop $=-\operatorname{Int}($ Tree $)+F$
Neglect $F \rightarrow$ Leading-Logarithmic (LL) Approximation

## $\rightarrow$ Virtual (loop) correction:

$2 \operatorname{Re}\left[\mathcal{M}_{F}^{(0)} \mathcal{M}_{F}^{(1) *}\right]=-g_{s}^{2} N_{C}\left|\mathcal{M}_{F}^{(0)}\right|^{2} \int \frac{\mathrm{~d} s_{i j} \mathrm{~d} s_{j k}}{16 \pi^{2} s_{i j k}}\left(\frac{2 s_{i k}}{s_{i j} s_{j k}}+\right.$ less singular terms $)$

Realized by Event evolution in $\mathrm{Q}=$ fractal scale (virtuality, $\mathrm{p}_{\text {r }}$, formation time, ...)

Resolution scale

$$
t=\ln \left(\mathrm{Q}^{2}\right)
$$

$$
\frac{\mathrm{d} N_{F}(t)}{d t}=-\frac{\mathrm{d} \sigma_{F+1}}{\mathrm{~d} \sigma_{F}} N_{F}(t)
$$

= Approximation to Real Emissions

Probability to remain
"unbranched" from to to $t$
$\rightarrow$ The "Sudakov Factor"

$$
\begin{aligned}
\frac{N_{F}(t)}{N_{F}\left(t_{0}\right)}= & \Delta_{F}\left(t_{0}, t\right)=\exp \left(-\int \frac{\mathrm{d} \sigma_{F+1}}{\mathrm{~d} \sigma_{F}}\right) \\
& =\text { Approximation to Loop Corrections }
\end{aligned}
$$

## Bootstrapped Perturbation Theory

$\rightarrow$ All Orders (resummed)


## Born <br> + Shower

$\uparrow$ Exponentiation
Universality (scaling)
Jet-within-a-jet-within-a-jet-...
Legs
But $\neq$ full QCD! Only LL Approximation.

## $\rightarrow$ Jack of All Orders, Master of None?

## Good Algorithm(s) $\rightarrow$ Dominant all-orders structures

But what about all these unphysical choices?
Renormalization Scales (for each power of $\alpha_{s}$ )
The choice of shower evolution "time" ~ Factorization Scale(s)
The radiation/antenna/splitting functions (finite terms arbitrary)
The phase space map ("recoils", d $\Phi_{n+1} / d \Phi_{n}$ )
The infrared cutoff contour (hadronization cutoff)
Nature does not depend on them $\rightarrow$ vary to estimate uncertainties Problem: existing approaches vary only one or two of these choices
I. Systematic Variations
$\rightarrow$ Comprehensive Theory Uncertainty Estimates
2. Higher-Order Corrections
$\rightarrow$ Systematic Reduction of
Uncertainties

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

## Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)

- of Phase Space (LIPS : 2 on-shell $\rightarrow 3$ on-shell partons, with (E,p) cons)


## Resolution Time

Infinite family of continuously deformable $Q_{E}$
Special cases: transverse momentum, invariant mass, energy

+ Improvements for hard $2 \rightarrow 4$ : "smooth ordering"


## Radiation functions



Written as Laurent-series with arbitrary coefficients, ant $i_{i}$ Special cases for non-singular terms: Gehrmann-Glover, MIN, MAX + Massive antenna functions for massive fermions ( $c, b, t$ )

## Kinematics maps

Formalism derived for infinitely deformable $\kappa_{3 \rightarrow 2}$
Special cases: ARIADNE, Kosower, + massive generalizations


## Changing Paradigm

## Ask:

Is it possible to use the all-orders structure that the shower so nicely generates for us, as a substrate, a stratification, on top of which fixed-order amplitudes could be interpreted as corrections, which would be finite everywhere?

## Answer:

Used to be no.
(Though first order worked out in the eighties (Sjöstrand), expansions rapidly became too complicated)

For multileg amplitudes, people then resorted to slicing up phase space (fixed-order amplitude goes here, shower goes there), generated many different cookbook recipes and much bookkeeping

## Solution: $(M C)^{2}$

"Higher-Order Corrections To Timelike Jets"

## Idea:

Start from quasi-conformal all-orders structure (approximate) Impose exact higher orders as finite corrections
Truncate at fixed scale (rather than fixed order)
Bonus: low-scale partonic events $\rightarrow$ can be hadronized

## Problems:

Traditional parton showers are history-dependent (non-Markovian)
$\rightarrow$ Number of generated terms grows like $2^{\mathrm{N}} \mathrm{N}$ !

+ Highly complicated expansions
Solution: (MC) ${ }^{2}$ : Monte-Carlo Markov Chain Markovian Antenna Showers (VINCIA)
$\rightarrow$ Number of generated terms grows like N
+ extremely simple expansions

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

## New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\rightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element $\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

## Helicities

Larkoski, Peskin, PRD 81 (2010) 054010

+ Ongoing, with A. Larkoski (MIT) \& J. Lopez-Villarejo (CERN)
Traditional parton showers use the standard Altarelli-Parisi kernels, $\mathrm{P}(\mathrm{z})=$ helicity sums/averages over:

| $P(z)$ | ++ | -+ | +- | -- |
| :---: | :---: | :---: | :---: | :---: |
| $g_{+} \rightarrow g g:$ | $1 / z(1-z)$ | $(1-z)^{3} / z$ | $z^{3} /(1-z)$ | 0 |
| $g_{+} \rightarrow q \bar{q}:$ | - | $(1-z)^{2}$ | $z^{2}$ | - |
| $q_{+} \rightarrow q g:$ | $1 /(1-z)$ | - | $z^{2} /(1-z)$ | - |
| $q_{+} \rightarrow g q:$ | $1 / z$ | $(1-z)^{2} / z$ | - | - |



Generalize these objects to dipole-antennae
E.g.,

$$
\begin{aligned}
& q \bar{q} \rightarrow q g \bar{q} \\
& ++\rightarrow+++\mathrm{MHV} \\
& ++\rightarrow+-+\mathrm{NMHV} \\
& +-\rightarrow++- \text { P-wave } \\
& +-\rightarrow+-- \text { P-wave }
\end{aligned}
$$

$\rightarrow$ Can trace helicities through shower
$\rightarrow$ Eliminates contribution from unphysical helicity configurations
$\rightarrow$ Can match to individual helicity amplitudes rather than helicity sum
$\rightarrow$ Fast! (gets rid of another factor $2^{\mathrm{N}}$ )

## 1. Initialization time

 (to pre-compute cross sections and warm up phase-space grids)$\mathrm{Z} \rightarrow \mathrm{n}$ : Number of Matched Legs
2. Time to generate 1000 events ( $Z \rightarrow$ partons, fully showered $\&$ matched. No hadronization.)

1000 SHOWERS

0.1 s
$\begin{array}{lllll}2 & 3 & 4 & 5 & 6\end{array}$
$\mathrm{Z} \rightarrow \mathrm{n}$ : Number of Matched Legs

$$
\begin{gathered}
\mathrm{Z} \rightarrow \text { udscb } ; \text { Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; Ecm }=9 \mathrm{I} .2 \mathrm{GeV} ; \mathrm{Q}_{\text {match }}=5 \mathrm{GeV} \\
\text { SHERPA I.4.0 (+COMIX) ; PYTHIA 8.I.65; VINCIA I.0.29 (+MADGRAPH 4.4.26) ; } \\
\text { gcc/gfortran v 4.7.I -O2 ; single } 3.06 \mathrm{GHz} \text { core (4GB RAM) }
\end{gathered}
$$

## Loop Corrections

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026

## Pedagogical Example: $Z^{0} \rightarrow q \bar{q}$ First Order (roownes)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $\mathrm{Q}=\mathrm{Qhad}^{\text {had }}$
(MC) ${ }^{\mathbf{2}}$ : Exclusive 2 -jet rate ( 2 and only 2 jets), at $Q=Q_{\text {had }}$

$$
\left|M_{0}^{0}\right|^{2} \Delta\left(s, Q_{\mathrm{had}}^{2}\right)=\left|M_{0}^{0}\right|^{2}\left(1-\int_{Q_{\text {had }}^{2}}^{s} \mathrm{~d} \Phi_{\mathrm{ant}} g_{s}^{2} \mathcal{C} A_{g / q \bar{q}}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Born
Sudakov
Approximate Virtual + Unresolved Real

NLO Correction: Subtract and correct by difference

$$
\left.\left.\begin{array}{c}
\frac{2 \operatorname{Re}\left[M_{0}^{0} M_{0}^{1^{*}}\right]}{\left|M_{0}^{0}\right|^{2}}=\frac{\alpha_{s}}{2 \pi} 2 C_{F}\left(2 I_{q \bar{q}}\left(\epsilon, \mu^{2} / m_{Z}^{2}\right)-4\right) \\
\Phi_{\text {ant }} 2 C_{F} g_{s}^{2} A_{g / q \bar{q}}=\frac{\alpha_{s}}{2 \pi} 2 C_{F}\left(-2 I_{q \bar{q}}\left(\epsilon, \mu^{2} / m_{Z}^{2}\right)+\frac{19}{4}\right)
\end{array}\right\} \quad \left\lvert\, \begin{array}{l}
\text { IR Singularity Operator }
\end{array}\right.\right\}\left|M_{0}^{0}\right|^{2} \rightarrow\left(1+\frac{\alpha_{s}}{\pi}\right)\left|M_{0}^{0}\right|^{2}
$$

## Loop Corrections

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

## Getting Serious: second order

Fixed Order: Exclusive 3-jet rate (3 and only 3 jets), at $\mathrm{Q}=\mathrm{Qhad}^{\text {a }}$

$$
\begin{aligned}
& \text { Exact } \rightarrow \underset{\text { Born }}{\left|M_{1}^{0}\right|^{2}}+\underset{\text { Virtual }}{\operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}+\int_{0}^{Q_{\text {had }}^{2}} \underset{\substack{\mathrm{~d} \Phi_{2} \\
\text { Unresolved Real }}}{\mathrm{d} \Phi_{1}}\left|M_{2}^{0}\right|^{2} \\
& \text { Virtual }
\end{aligned}
$$



## Loop Corrections

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

## NLO Correction: Subtract and correct by difference

$$
V_{1 Z}(q, g, \bar{q})=\left[\frac{2 \operatorname{Re}\left[M_{1}^{0} M_{1}^{1 *}\right]}{\left|M_{1}^{0}\right|^{2}}\right]^{\mathrm{LC}}-\frac{\alpha_{s}}{\pi}-\frac{\alpha_{s}}{2 \pi}\left(\frac{11 N_{C}-2 n_{F}}{6}\right)^{\mu_{\mathrm{R}}} \ln \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right)
$$

$$
\begin{aligned}
& +\frac{\alpha_{s} C_{A}}{2 \pi}\left[-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{g \bar{q}}\right)+\frac{34}{3}\right] \\
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-2 I_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-2 I_{g \bar{q}, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right)-1\right] \\
& \begin{array}{c}
\text { Gluon Emission IR } \\
\text { Singularity }
\end{array} \\
& \begin{array}{c}
\text { Singularity }
\end{array}
\end{aligned}
$$

$$
+\frac{\alpha_{s} C_{A}}{2 \pi}\left[8 \pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} A_{g / q \overline{\mathbf{Q}_{1}}=3 \text {-parton }}^{\text {std }}+8 \pi^{2} \int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{~d} \Phi_{\text {ant }} \delta A_{g / q \bar{q}}\right.
$$

$$
2 \rightarrow 3 \text { Sudakov Logs }
$$

Sudakov Logs

$$
\begin{aligned}
& +\frac{\alpha_{s} n_{F}}{2 \pi}\left[-\sum_{j=1}^{2} 8 \pi^{2} \int_{0}^{s_{j}} \mathrm{~d} \Phi_{\text {ant }}\left(1-O_{S j}\right) P_{A j} A_{\bar{q} / q g}^{\text {Std }}\right. \\
& \text { Ordering Function } \begin{array}{c}
\text { Gluon-Splitting } \\
\text { Ordering Function }
\end{array} \\
& \text { plit } \\
& \left.\quad-\frac{1}{6} \frac{s_{q g}-s_{g \bar{q}}}{s_{q g}+s_{g \bar{q}}} \ln \left(\frac{s_{q g}}{s_{g \bar{q}}}\right)\right],
\end{aligned}
$$

## Loop Corrections

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

## $(M C)^{\mathbf{2}}:$ NLO $Z \rightarrow 2 \rightarrow 3$ Jets + Markov Shower

Size of NLO Correction: over 3-parton Phase Space

$$
\begin{gathered}
\text { Markov } \\
\text { Evolution in: } \\
\text { Transverse } \\
\text { Momentum } \\
\text { Parameters: } \\
\mathrm{as}_{\mathrm{S}}\left(\mathrm{M}_{\mathrm{z}}\right)=0.12 \\
\mu_{\mathrm{R}}=\mathrm{m}_{\mathrm{Z}} \\
\Lambda_{\mathrm{QCD}}=\Lambda_{\mathrm{MS}}
\end{gathered}
$$



Scaled Invariants

$$
y_{i j}=\frac{\left(p_{i} \cdot p_{j}\right)}{M_{Z}^{2}}
$$

$\rightarrow 0$ when $\mathrm{i} \| \mathrm{j}$
\& when $\mathrm{E}_{\mathrm{j}} \rightarrow 0$

## Loop Corrections

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

## The choice of $\mu_{R}$



Markov Evolution in: Transverse Momentum, $\mathrm{as}_{\mathrm{s}}\left(\mathrm{Mz}_{\mathrm{z}}\right)=0.12$

## Loop Corrections

Ongoing work, with E. Laenen \& L. Hartgring (NIKHEF)

## The choice of evolution variable (Q)



## Future Directions

1. Publish 3 papers ( $\sim$ a couple of months: helicities, NLO multileg, ISR)
2. Apply these corrections to a broader class of processes, including ISR $\rightarrow$ LHC phenomenology
3. Automate correction procedure, via interfaces to BlackHat, MadLoop, ... (for the LO corrections, we currently use MadGraph)
4. Recycle formalism to derive unitary allorders second-order corrections to antenna showers (e.g., the one I just showed could be applied to any qq $\rightarrow$ qgq branching, anywhere in the shower) $\rightarrow$ higher-logarithmic shower resummations

## Uncertainties

No calculation is more precise than the reliability of its uncertainty estimate $\rightarrow$ aim for full assessment of TH uncertainties.

## Doing Variations

## Traditional Approach:

Run calculation $1_{\text {central }}+2 \mathrm{~N}_{\text {variations }}=$ slow

## Another use for simple analytical expansions?

For each event, can compute probability this event would have resulted under alternative conditions

$$
P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

+ Unitarity: also recompute no-evolution probabilities

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

## VINCIA:

= fast, automatic
Central weights = 1
+N sets of alternative weights = variations (all with $\langle\mathrm{w}>=1$ )
$\rightarrow$ For every configuration/event, calculation tells how sure it is
Bonus: events only have to be hadronized \& detector-simulated ONCE!

## Quantifying Precision

Example of Physical Observable: Before (left) and After (right) Matching


Jet Broadening = LEP event-shape variable, measures "fatness" of jets

## + Interfaced to PYTHIA

Topcites Home $199219931994199519961997199819992000 \underline{2001} \underline{2002} 2007200820092010$
The 100 most highly cited papers during 2010 in the hep-ph archive

1. PYTHIA 6.4 Physics and Manual

Published in:JHEP 0605:026,2006 (arXiv: hep-ph/0603175)

## Now $\rightarrow$ PYTHIA 8: Sjöstrand, Mrenna, Skands, CPC 178 (2008) 852

Physics Processes, mainly for $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{pp} / \mathrm{p} \overline{\mathrm{p}}$ beams
Standard Model: Quarks, gluons, photons, Higgs, W \& Z boson(s); + Decays Supersymmetry + Generic Beyond-the-Standard-Model: N. Desai \& p. Skands, arXiv:1109.5852 + New gauge forces, More Higgses, Compositeness, $4^{\text {th }}$ Gen, Hidden-Valley, ...

## (Parton Showers) and Underlying Event

PT-ordered showers \& multiple-parton interactions: Sjöstrand \& Skands, Eur.Phys.J. C39 (2005) 129 + more recent improvements: Corke \& Sjöstrand, JHEP 01 (2010) 035; Eur.Phys.J. C69 (2010) 1

## Hadronization: Lund String

Org "Lund" (Q-Qbar) string: Andersson, Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 7 (1997) 1 + "Junction" ( $\left.Q_{R} Q_{G} Q_{B}\right)$ strings: Sjöstrand \& Skands, Nucl.Phys. B659 (2003) 243; JHEP 0403 (2004) 053

Soft QCD: Minimum-bias, color reconnections, Bose-Einstein, diffraction, ...
Color Reconnection: Skands \& Wicke, EPJC52 (2007) 133 Diffraction: Navin, arXiv:1005.3894 Bose-Einstein: Lönnblad, Sjöstrand, EPJC2 (1998) 165

LHC "Perugia" Tunes: Skands, PRD82 (2010) 074018

## Theory $\leftrightarrow$ Data

## Global Comparisons

Thousands of measurements
Different energies, acceptance regions, and observable defs Different generators \& versions, with different setups

## LHC@home 2.0

TEST4THEORY


Quite technical Quite tedious

Ask someone else everyone

LEP Tevatron

B. Segal,
P. Skands,
J. Blomer,
P. Buncic,
F. Grey,
A. Haratyunyan,
A. Karneyeu,
D. Lombrana-Gonzalez,
M. Marquina

6,500 Volunteers
Over 500 billion simulated collision events

## LHC@Home 2.0 - Test4Theory

## Idea: ship volunteers a virtual atom smasher

(to help do high-energy theory simulations)
Runs when computer is idle. Sleeps when user is working.
Problem: Lots of different machines, architectures
$\rightarrow$ Use Virtualization (CernVM)
Provides standardized computing environment (in our case Scientific Linux) on any machine: Exact replica of our normal working environment
Factorization of IT and Science parts: nice!
Infrastructure; Sending Jobs and Retrieving output
Based on BOINC platform for volunteer clouds (but can also use other distributed computing resources)
New aspect: virtualization, never previously done for a volunteer cloud

## http://lhcathome2.cern.ch/test4theory/

## Last 24 Hours: 2853 machines



Next Big Project (EU ICT): Citizen Cyberlab (3.4M€), kickoff in November ...

## Results $\rightarrow$ mcplots.cern.ch

## Menu

## $\rightarrow$ Front Page

$\rightarrow$ LHC@home 2.0
$\rightarrow$ Generator Versions
$\rightarrow$ Generator Validation
$\rightarrow$ Update History

## Analysis filter:

$\rightarrow$ ALL_ op/ppbar

## Z (hadronic)

$\rightarrow$ Aplanarity
$\rightarrow \mathrm{B}$ (Total)
$\rightarrow \mathrm{B}$ (Heavy Hemisph)
$\rightarrow$ B(Light Hemisph)
$\rightarrow$ C parameter
$\rightarrow$ D parameter
$\rightarrow \mathrm{M}$ (Heavy Hemisph)
$\rightarrow$ M(Light Hemisph)
$\rightarrow \Delta \mathrm{M}$ (Heavy-Light)
$\rightarrow$ Multiplicity Distributions
$\rightarrow$ Planarity
$\rightarrow$ pTin (Sph)
$\rightarrow \mathrm{pTin}$ (Thrust)
$\rightarrow$ pTout (Sph)
$\rightarrow$ pTout (Thrust)
$\rightarrow$ Sphericity
$\rightarrow$ Thrust
1-Thrust
Thrust Major

## Z (hadronic) : 1-Thrust

(Total number of plots ~ 500,000)


## Beyond Perturbation Theory

Better pQCD $\rightarrow$ Better non-perturbative constraints

## Soft QCD \& Hadronization:

Less perturbative ambiguity $\rightarrow$ improved clarity

## ALICE/RHIC:

pp as reference for AA
Collective (soft) effects in pp

## Beyond Colliders?

## Other uses for a high-precision fragmentation model

## Dark-matter annihilation:

 Photon \& particle spectra
## Cosmic Rays:

Extrapolations to ultra-high energies

## Summary

## QCD phenomenology is witnessing a rapid evolution:

New efficient formalism to embed higher-order amplitudes within shower resummations (VINCIA)
Driven by demand of high precision for LHC environment.

## Non-perturbative QCD is still hard

Lund string model remains best bet, but ~ 30 years old Lots of input from LHC: min-bias, multiplicities, ID particles, correlations, shapes, you name it ... (THANK YOU to the experiments!)
New ideas (dualities, hydro, ...) still in their infancy; but there are new ideas! (heavy-ion collisions offers complementary testing ground)
"Solving the LHC" is both interesting and rewarding Key to high precision $\rightarrow$ max information

[^0]
## Theory and Practice

## Example: The Higgs diphoton signal

## THEORY

Perturbation around zero coupling Truncate at lowest non-vanishing order


Improve by computing quantum corrections, order by orderHow many gluons (of given energy) are there in the proton?
(not calculable perturbatively, obtained from fits to data)

Experiment (ATLAS $2011+2012$ )
Photon pairs: invariant mass
(in context of search for $H^{0} \rightarrow Y Y$ )


## Fixed Order: Recap

## Improve by computing quantum

 corrections, order by order
## Leading Order



## Next-to-Leading Order



$$
\sigma^{\mathrm{NLO}}=\sigma^{\text {Born }}+\int \underset{\rightarrow 1 / \epsilon^{2}+1 / \epsilon+\text { Finite }}{\mathrm{d} \Phi_{F+1}\left|\underset{\rightarrow-1 / \epsilon^{2}--1 / \epsilon+\text { Finite }}{\underset{\rightarrow}{(0)}} \mathcal{M}_{F}^{(0)}\right|^{2}}+\int \mathrm{d} \Phi_{F} 2 \operatorname{Re} \underset{\rightarrow}{(1)} \mathcal{M}_{\substack{(0) *}}
$$

The Subtraction

Idea

$$
=\sigma^{\text {Born }}+\int \mathrm{d} \Phi_{F+1} \underbrace{\left(\left|\mathcal{M}_{F+1}^{(0)}\right|^{2}-\mathrm{d} \sigma_{S}^{\mathrm{NLO}}\right)}_{\text {Finite by Universality }}
$$

$$
+\underbrace{\int \mathrm{d} \Phi_{F} 2 \operatorname{Re}\left[\mathcal{M}_{F}^{(1)} \mathcal{M}_{F}^{(0) *}\right]+\int \mathrm{d} \Phi_{F+1} \mathrm{~d} \sigma_{S}^{\mathrm{NLO}}}_{\text {Finite by KLN }}
$$

 (will return to later)


## Fixed Order: Recap

Improve by computing quantum corrections, order by order

## Leading Order



## State of the Art: NNLO

## Next-to-Leading Order



## Shower Types

## Traditional vs Coherent vs Global vs Sector vs Dipole



Parton Shower (DGLAP)
Coherent Parton Shower (Herwig [12,40], Pythia6 [11])
Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32], Vincia)
Sector Dipole-Antenna (LP [41], Vincia)
Partitioned-Dipole Shower (SK [23], NS [42], DTW [24], Pythia [38], SHERPA)

| $\operatorname{Coll}(I)$ | $\operatorname{Soft}(I K)$ |
| :--- | :--- |
| $a_{I}$ | $a_{I}+a_{K}$ |
| $\Theta_{I} a_{I}$ | $\Theta_{I} a_{I}+\Theta_{K} a_{K}$ |
| $a_{I K}+a_{H I}$ | $a_{I K}$ |
| $\Theta_{I K} a_{I K}+\Theta_{H I} a_{H I}$ | $a_{I K}$ |
| $a_{I, K}+a_{I, H}$ | $a_{I, K}+a_{K, I}$ |

Figure 2: Schematic overview of how the full collinear singularity of parton $I$ and the soft singularity of the $I K$ pair, respectively, originate in different shower types. ( $\Theta_{I}$ and $\Theta_{K}$ represent angular vetos with respect to partons $I$ and $K$, respectively, and $\Theta_{I K}$ represents a sector phase-space veto, see text.)

# Global Antennae 

| $\times$ | $\frac{1}{y_{i j} y_{j k}}$ | $\frac{1}{y_{i j}}$ | $\frac{1}{y_{j k}}$ | $\frac{y_{j k}}{y_{i j}}$ | $\frac{y_{i j}}{y_{j k}}$ | $\overline{\frac{y_{k j}^{2}}{y_{i j}}}$ | $\overline{\frac{y_{i j}^{2}}{y_{j k}}}$ | 1 | $y_{i j}$ | $y_{j k}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q \bar{q} \rightarrow q q \bar{q}$ |  |  |  |  |  |  |  |  |  |  |
| $++\rightarrow+++$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $++\rightarrow+-+$ | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 2 | 0 | 0 |
| $+-\rightarrow++-$ | 1 | 0 | -2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| $\xrightarrow[+-\rightarrow+--]{ }$ | 1 | -2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| $q g \rightarrow q g g$ |  |  |  |  |  |  |  |  |  |  |
| $++\rightarrow+++$ | 1 | 0 | $-\alpha+1$ | 0 | $2 \alpha-2$ | 0 | 0 | 0 | 0 | 0 |
| $++\rightarrow+-+$ | 1 | -2 | -3 | 1 | 3 | 0 | -1 | 3 | 0 | 0 |
| $+-\rightarrow++-$ | 1 | 0 | -3 | 0 | 3 | 0 | -1 | 0 | 0 | 0 |
| $+-\rightarrow+--$ | 1 | -2 | $-\alpha+1$ | 1 | $2 \alpha-2$ | 0 | 0 | 0 | 0 | 0 |
| $g g \rightarrow g g g$ |  |  |  |  |  |  |  |  |  |  |
| $++\rightarrow+++$ | 1 | $-\alpha+1$ | $-\alpha+1$ | $2 \alpha-2$ | $2 \alpha-2$ | 0 | 0 | 0 | 0 | 0 |
| $++\rightarrow+-+$ | 1 | -3 | -3 | 3 | 3 | -1 | -1 | 3 | 1 | 1 |
| $+-\rightarrow++-$ | 1 | $-\alpha+1$ | -3 | $2 \alpha-2$ | 3 | 0 | -1 | 0 | 0 | 0 |
| $\xrightarrow{+-\rightarrow+--}$ | 1 | -3 | $-\alpha+1$ | 3 | $2 \alpha-2$ | -1 | 0 | 0 | 0 | 0 |
| $q g \rightarrow q \bar{q}^{\prime} q^{\prime}$ |  |  |  |  |  |  |  |  |  |  |
| $++\rightarrow++-$ | 0 | 0 | 0 | 0 | 0 | 0 | $\frac{1}{2}$ | 0 | 0 | 0 |
| $++\rightarrow+-+$ | 0 | 0 | $\frac{1}{2}$ | 0 | -1 | 0 | $\frac{1}{2}$ | 0 | 0 | 0 |
| $+-\rightarrow++-$ | 0 | 0 | $\frac{1}{2}$ | 0 | -1 | 0 | $\overline{2}$ | 0 | 0 | 0 |
| $+-\rightarrow+--$ | 0 | 0 | 0 | 0 | 0 | 0 | $\frac{1}{2}$ | 0 | 0 | 0 |
| $g g \rightarrow g \bar{q} q$ |  |  |  |  |  |  |  |  |  |  |
| $++\rightarrow++-$ | 0 | 0 | 0 | 0 | 0 | 0 | $\frac{1}{2}$ | 0 | 0 | 0 |
| $++\rightarrow+-+$ | 0 | 0 | $\frac{1}{2}$ | 0 | -1 | 0 | $\frac{1}{2}$ | 0 | 0 | 0 |
| $+-\rightarrow++-$ | 0 | 0 | $\frac{1}{2}$ | 0 | -1 | 0 | $\frac{1}{2}$ | 0 | 0 | 0 |
|  | 0 | 0 | 0 | 0 |  | 0 | $\frac{1}{2}$ |  | 0 | 0 |

## Sector Antennae

Global $\quad \bar{a}_{g / q g}^{\mathrm{gl}}\left(p_{i}, p_{j}, p_{k}\right) \xrightarrow{s_{j k} \rightarrow 0} \frac{1}{s_{j k}}\left(P_{g g \rightarrow G}(z)-\frac{2 z}{1-z}-z(1-z)\right)$
$\rightarrow \mathrm{P}(z)=$ Sum over two neigboring antennae

## Sector

Only a single term in each phase space point



$\rightarrow$ Full $\mathrm{P}(\mathrm{z})$ must be contained in every antenna

$$
\begin{aligned}
& \bar{a}_{j / I K}^{\text {sct }}\left(y_{i j}, y_{j k}\right)=\bar{a}_{j / I K}^{\mathrm{gl}}\left(y_{i j}, y_{j k}\right)+\delta_{I g} \delta_{H_{K} H_{k}}\left\{\delta_{H_{I} H_{i}} \delta_{H_{I} H_{j}}\left(\frac{1+y_{j k}+y_{j k}^{2}}{y_{i j}}\right)\right. \\
& \left.+\delta_{H_{I} H_{j}}\left(\frac{1}{y_{i j}\left(1-y_{j k}\right)}-\frac{1+y_{j k}+y_{j k}^{2}}{y_{i j}}\right)\right\} \\
& \text { Sector }=\text { Global + } \\
& \text { additional collinear terms } \\
& \text { (from "neighboring" antenna) } \\
& +\delta_{K g} \delta_{H_{I} H_{i}}\left\{\delta_{H_{I} H_{j}} \delta_{H_{K} H_{k}}\left(\frac{1+y_{i j}+y_{i j}^{2}}{y_{j k}}\right)\right. \\
& \left.+\delta_{H_{K} H_{j}}\left(\frac{1}{y_{j k}\left(1-y_{i j}\right)}-\frac{1+y_{i j}+y_{i j}^{2}}{y_{j k}}\right)\right\}
\end{aligned}
$$

## The Denominator the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last $\rightarrow$ proliferation of terms

Number of histories contributing to $\mathrm{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$ !


$$
(K \sim M+K) \substack{i=1 \\ \rightarrow 2 \text { terms }} \substack{i=1}
$$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms
(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

## Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

$$
2^{n} n!\rightarrow n!
$$

Giele, Kosower, Skands, PRD 84 (20II) 054003

(+ generic Lorentzinvariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration,"ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathbf{n !} \rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$ : Unique weight, independently of how it was produced

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms After 4 branchings: 384 terms

+ Sector antennae Larkosi, Peskin,Phys.Rev.D8I (20I0) 054010
$\rightarrow$ I term at any order Lopez-Villarejo, Skands, JHEP IIII (201I) I50


## Approximations

## Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements
Plot distribution of Logıo(PS/ME)
Dead Zone: I-2\% of phase space have no strongly ordered paths leading there*
*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

## Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching

+ smooth ordering beyond matched multiplicities

$$
\frac{\hat{p}_{\perp}^{2}}{\hat{p}_{\perp}^{2}+p_{\perp}^{2}} P_{\mathrm{LL}} \quad \begin{array}{lll}
\hat{p}_{\perp}^{2} \text { last branching } \\
p_{\perp}^{2} & \text { current branching }
\end{array}
$$




## Better Approximations

## Distribution of Logı(PSLo/MELo) (inverse ~ matching coefficient)



Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

P. Skands

## + Matching (+ full colour)




## Example: Non-SingularTerms

Giele, Kosower, Skands, PRD 84 (2011) 054003


Thrust $=$ LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

## Example: $\mu_{\vec{R}}$

Giele, Kosower, Skands, PRD 84 (2011) 054003


Thrust $=$ LEP event-shape variable, goes from 0 (pencil) to 0.5 (hedgehog)

## IR Singularity Operators

Gehrmann, Gehrmann-de Ridder, Glover, JHEP 0509 (2005) 056
$q \bar{q} \rightarrow q g \bar{q}$ antenna function

$$
X_{i j k}^{0}=S_{i j k, I K} \frac{\left|\mathcal{M}_{i j k}^{0}\right|^{2}}{\left|\mathcal{M}_{I K}^{0}\right|^{2}}
$$

$$
A_{3}^{0}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)=\frac{1}{s_{123}}\left(\frac{s_{13}}{s_{23}}+\frac{s_{23}}{s_{13}}+2 \frac{s_{12} s_{123}}{s_{13} s_{23}}\right)
$$

Integrated antenna

$$
\begin{aligned}
& \mathcal{P o l e s}\left(\mathcal{A}_{3}^{0}\left(s_{123}\right)\right)=-2 \mathbf{I}_{q \bar{q}}^{(1)}\left(\epsilon, s_{123}\right) \\
& \text { Finite }\left(\mathcal{A}_{3}^{0}\left(s_{123}\right)\right)=\frac{19}{4} \cdot \\
& \quad \mathcal{X}_{i j k}^{0}\left(s_{i j k}\right)=\left(8 \pi^{2}(4 \pi)^{-\epsilon} e^{\epsilon \gamma}\right) \int \mathrm{d} \Phi_{X_{i j k}} X_{i j k}^{0} .
\end{aligned}
$$

Singularity Operators

$$
\begin{aligned}
\mathbf{I}_{q \bar{q}}^{(1)}\left(\epsilon, \mu^{2} / s_{q \bar{q}}\right) & =-\frac{e^{\epsilon \gamma}}{2 \Gamma(1-\epsilon)}\left[\frac{1}{\epsilon^{2}}+\frac{3}{2 \epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q \bar{q}}}\right)^{\epsilon} \\
\mathbf{I}_{q g}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right) & =-\frac{e^{\epsilon \gamma}}{2 \Gamma(1-\epsilon)}\left[\frac{1}{\epsilon^{2}}+\frac{5}{3 \epsilon}\right] \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q g}}\right)^{\epsilon} \quad \text { for } \mathbf{q g} \rightarrow \mathbf{q g g} \\
\mathbf{I}_{q g, F}^{(1)}\left(\epsilon, \mu^{2} / s_{q g}\right) & =\frac{e^{\epsilon \gamma}}{2 \Gamma(1-\epsilon)} \frac{1}{6 \epsilon} \operatorname{Re}\left(-\frac{\mu^{2}}{s_{q g}}\right)^{\epsilon} \quad \text { for } \mathbf{q g} \rightarrow \mathbf{q q}^{\prime} \mathbf{q}^{\prime}
\end{aligned}
$$

## Loop Corrections

## The choice of evolution variable (Q)

Variation with $\mu_{\mathrm{R}}=\mathrm{m}_{\mathrm{D}}=2 \min \left(\mathrm{~s}_{\mathrm{ij},}, \mathrm{s}_{\mathrm{jk}}\right)$


Parameters: $\mathrm{as}_{\mathrm{s}}\left(\mathrm{Mz}_{\mathrm{z}}\right)=0.12, \wedge_{\mathrm{Qcd}}=\Lambda \mathrm{cmw}$

## Additional Sources of Particle Production

Hadrons are composite $\rightarrow$ possibility of Multiple Parton-Parton Interactions (+ their showers)

Goes beyond standard factorization theorems

Builds up the soft underlying-event activity in hadron collisions


Many recent developments, on factorization, multi-parton PDFs, cross sections, interaction models, color flow, etc. But not the topic for today

## Hadronization

- A set of colored partons resolved at a scale of $\sim 1 \mathrm{GeV}$ (the perturbative cutoff) $\rightarrow$ set of color-neutral hadronic states.

$\Rightarrow$ Model as $1+1$ dimensional (classical) string + breaks via quantum tunneling


## (Color Flow in MC Models)

## "Planar Limit"

Equivalent to $\mathrm{N}_{\mathrm{c}} \rightarrow \infty$ : no color interference*
*) except as reflected by the implementation of QCD coherence effects in the Monte Carlos via angular or dipole ordering

Rules for color flow:


For an entire cascade:



Coherence of pQCD cascades $\rightarrow$ not much "overlap" between strings $\rightarrow$ planar approx pretty good
LEP measurements in WW confirm this (at least to order $10 \% \sim 1 / N_{c}{ }^{2}$ )

## Hadronization

## The problem:

- Given a set of colored partons resolved at a scale of $\sim 1 \mathrm{GeV}$ (the perturbative cutoff), need a (physical) mapping to a new set of degrees of freedom = color-neutral hadronic states.

MC models do this in three steps

1. Map partons onto continuum of highly excited hadronic states (called 'strings' or 'clusters')
2. Iteratively map strings/clusters onto discrete set of primary hadrons (string breaks / cluster splittings / cluster decays)
3. Sequential decays into secondary hadrons (e.g., $\rho>\pi \pi, \Lambda^{0}>n \pi^{0}, \pi^{0}>\gamma \gamma, \ldots$ )

$$
\text { Distance Scales } \sim 10^{-15} \mathrm{~m}=1 \text { fermi }
$$

## From Partons to Strings

Short Distances ~ pQCD


Partons


Long Distances ~ Linear Confinement


Strings (Flux Tubes), Hadrons

$$
F(r) \approx \mathrm{const}=\kappa \approx 1 \mathrm{GeV} / \mathrm{fm} \quad \Longleftrightarrow \quad V(r) \approx \kappa r
$$

- Motivates a model:
- Separation of transverse and longitudinal degrees of freedom
- Simple description as I+I dimensional worldsheet - string with Lorentz invariant formalism


## The (Lund) String Model

## Map:

- Quarks > String Endpoints
- Gluons > Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break constant per unit area > AREA LAW


Gluon = kink on string, carrying energy and momentum

## Simple space-time picture

Details of string breaks more complicated $\rightarrow$ tuning

## Hadronization

One Breakup:
leftover string

$\overrightarrow{\text { Area }}$
$\underset{\text { Law }}{\rightarrow} \operatorname{Prob}\left(m_{q}^{2}, p_{\perp q}^{2}\right) \propto \exp \left(\frac{-\pi m_{q}^{2}}{\kappa}\right) \exp \left(\frac{-\pi p_{\perp q}^{2}}{\kappa}\right) \underset{\text { Lund FF }}{\text { Causality }} f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)$
Iterated Sequence:



[^0]:    See also 2012 edition of Review of Particle Physics (PDG), section on "Monte Carlo Event Generators", by P. Nason \& PS.

