QCD in the Era of the LHC

Theory and Practice

Peter Skands (CERN)

The Large Hadron Collider

Apr 5 2012 at 00:38 CEST: LHC shift crew declared 'stable beams' for physics data taking at 8 TeV

Huge investment in resources and manpower Journal Publications: 85 ATLAS, 80 CMS, 25 LHCb, 22 ALICE Searches for new physics still inconclusive

Searching towards lower cross sections, the game gets harder + Intense scrutiny (after discovery) requires high precision

Theory task: invest in precision

This talk: to give an idea of how we (attempt to) solve QCD, and future developments

Scattering Experiments

LHC detector
Cosmic-Ray detector Neutrino detector X-ray telescope
\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

Scattering Experiments

LHC detector
Cosmic-Ray detector Neutrino detector X-ray telescope
\rightarrow Integrate differential cross sections over specific phase-space regions

Predicted number of counts
= integral over solid angle

$$
N_{\text {count }}(\Delta \Omega) \propto \int_{\Delta \Omega} \mathrm{d} \Omega \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}
$$

> In particle physics: Integrate over all quantum histories

THEORY

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

\rightarrow colour-octet gauge bosons: gluons

+ (in SM): colour-triplet fermions: quarks
Free parameters $=$ quark masses and value of α_{s}

Why not Lattice for LlWC?

To "resolve" a hard LHC collision

$$
\text { Lattice spacing: } \frac{1}{14 \mathrm{TeV}} \sim 10^{-5} \mathrm{fm}
$$

Why not Lattice for LHC?

To "resolve" a hard LHC collision

$$
\text { Lattice spacing: } \frac{1}{14 \mathrm{TeV}} \sim 10^{-5} \mathrm{fm}
$$

To include hadronization

Proper time $t \sim \frac{1}{0.5 \mathrm{GeV}} \sim 0.4 \mathrm{fm} / c \quad \times$ Lorentz Boost Factor
Boost factor at $\mathrm{LHC} \approx 10^{4}$
\rightarrow would need $\approx 4000 \mathrm{fm}$ to fit entire collision
$\rightarrow 10^{34}$ lattice points in total
Biggest lattices today are $64 \times 64 \times 64 \times 128 \approx 10^{7}$

Lattice \rightarrow one or a few hadrons at a time

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

\Rightarrow The Way of the Chicken
- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision $=$ higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision $=$ higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision $=$ higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...
- The unlucky chicken
- Put all its eggs in one basket and didn't solve QCD

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision $=$ higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...
- The unlucky chicken
- Put all its eggs in one basket and didn't solve QCD

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision = higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...
- The unlucky chicken
- Put all its eggs in one basket and didn't solve QCD

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

Calculus: $\{A\}$ converges to B if an n exists for which $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$

Monte Carlo: $\{A\}$ converges to B if n exists for which the probability for $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$, is $>\mathrm{P}$, for any $\mathrm{P}[0<\mathrm{P}<1]$

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

Calculus: $\{A\}$ converges to B if an n exists for which $\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$

Monte Carlo: $\{A\}$ converges to B if n exists for which the probability for
$\left|A_{i>n}-B\right|<\varepsilon$, for any $\varepsilon>0$, is $>\mathrm{P}$, for any $\mathrm{P}[0<\mathrm{P}<1]$
"This risk, that convergence is only given with a certain probability, is inherent in Monte Carlo calculations and is the reason why this technique was named after the world's most famous gambling casino. Indeed, the name is doubly appropriate because the style of gambling in the Monte Carlo casino, not to be confused with the noisy and tasteless gambling houses of Las Vegas, is serious and sophisticated."
F. James, "Monte Carlo theory and practice", Rept. Prog. Phys. 43 (1980) 1145

Convergence

MC convergence is Stochastic!

$$
\frac{1}{\sqrt{n}} \text { in any dimension }
$$

preed dot ilize
Fixed dof tize

Uncertainty (after \boldsymbol{n} function evaluations)	$\mathrm{n}_{\text {eval }} /$ bin	Approx Conv. Rate (in ID)	Approx Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2^{D}	$\mathrm{I} / \mathrm{n}^{2}$	$\mathrm{I} / \mathrm{n}^{2 / \mathrm{D}}$
Simpson's Rule (3-point)	3^{D}	$\mathrm{I} / \mathrm{n}^{4}$	$\mathrm{I} / \mathrm{n}^{4 / \mathrm{D}}$
\ldots m-point (Gauss rule)	m^{D}	$\mathrm{I} / \mathrm{n}^{2 \mathrm{~m}-1}$	$\mathrm{I} / \mathrm{n}^{(2 \mathrm{~m}-\mathrm{I}) / \mathrm{D}}$
Monte Carlo	I	$\mathrm{I} / \mathrm{n}^{1 / 2}$	$\mathrm{I} / \mathrm{n}^{1 / 2}$

> + many ways to optimize: stratification, adaptation, ...
> + gives "events" \rightarrow iterative solutions,
> + interfaces to detector simulation \& propagation codes

Monte Carlo Generators

Calculate Everything \approx solve $\mathrm{QCD} \rightarrow$ requires compromise!
Improve lowest-order perturbation theory, by including the 'most significant' corrections
\rightarrow complete events (can evaluate any observable you want)

Existing Approaches

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. SHERPA : Begun in 2000. Originated in "matching" of matrix elements to showers: CKKW.

+ MORE SPECIALIZED: ALPGEN, MADGRAPH,ARIADNE,VINCIA,WHIZARD, MC@NLO, POWHEG, ...

(Traditional) Monte Carlo Generators

Perturbative Evolution

Hard Process

Leading Order, Infinite Lifetimes,

Based on small-angle singularity of accelerated charges (synchrotron radiation, semi-classical)

Altarelli-Parisi Splitting Kernels
Leading Logarithms, Leading Color, ...

+ Colour coherence

Factorization Scale

Perturbative Evolution: Bremsstrahlung

The Strong Coupling

Bjorken scaling

To first approximation, QCD is SCALE INVARIANT (a.k.a. conformal)

A jet inside a jet inside a jet inside a jet ...

If the strong coupling did not "run", this would be absolutely true (e.g, N=4 Supersymmetric Yang-Mills)

As it is, the coupling only runs slowly (logarithmically) at high energies \rightarrow can still gain insight from fractal analogy

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1}
\end{aligned}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1}
\end{aligned}
$$

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \quad \checkmark \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \quad \ldots
\end{aligned}
$$

Bremsstrahlung

This gives an approximation to infinite-order tree-level cross sections (here "double-log approximation: DLA") (Running coupling and a few more subleading singular terms can also be included \rightarrow MLLA, NLL, ...)

Bremsstrahlung

For any basic process $d \sigma_{X}=\checkmark$ (calculated process by process)

$$
\begin{aligned}
& d \sigma_{X+1} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 1}}{s_{i 1}} \frac{d s_{1 j}}{s_{1 j}} d \sigma_{X} \\
& d \sigma_{X+2} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 2}}{s_{i 2}} \frac{d s_{2 j}}{s_{2 j}} d \sigma_{X+1} \quad \checkmark \\
& d \sigma_{X+3} \sim N_{C} 2 g_{s}^{2} \frac{d s_{i 3}}{s_{i 3}} \frac{d s_{3 j}}{s_{3 j}} d \sigma_{X+2} \ldots
\end{aligned}
$$

This gives an approximation to infinite-order tree-level cross sections (here "double-log approximation: DLA") (Running coupling and a few more subleading singular terms can also be included \rightarrow MLLA, NLL, ...)

But something is not right ...

Total cross section would be infinite ...

Loops and Legs

Coefficients of the Perturbative Series

Loops and Legs

Coefficients of the Perturbative Series

\rightarrow includes both real (tree) and virtual (loop) corrections

Bootstrapped Perturbation Theory

Resummation

Bootstrapped Perturbation Theory

Resummation

New: Markovian pQCD*

*)pQCD : perturbative QCD
Start at Born level
$\left|M_{F}\right|^{2}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)0I4026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD*

*)pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

VINCIA: Giele, Kosower, Skands, PRD78(2008)0I4026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

*)pQCD : perturbative QCD

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(201I)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD

*)pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(201I)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD*

*)pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(201I)054003 + ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD*

*) pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \mathrm{ant}} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real
*)pQCD : perturbative QCD

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int \operatorname{Real}$
*) pQCD : perturbative QCD

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD*

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

$$
\longrightarrow\left|M_{F+1}\right|^{2} \stackrel{L L}{\sim} \sum_{i \in \text { ant }} a_{i}\left|M_{F}\right|^{2}
$$

Correct to Matrix Element

$$
a_{i} \rightarrow \frac{\left|M_{F+1}\right|^{2}}{\sum a_{i}\left|M_{F}\right|^{2}} a_{i}
$$

Unitarity of Shower

$$
\text { Virtual }=-\int \text { Real }
$$

Correct to Matrix Element
$\left|M_{F}\right|^{2} \rightarrow\left|M_{F}\right|^{2}+2 \operatorname{Re}\left[M_{F}^{1} M_{F}^{0}\right]+\int$ Real
*)pQCD : perturbative QCD

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements

New: Markovian pQCD*

*)pQCD : perturbative QCD

Start at Born level

$$
\left|M_{F}\right|^{2}
$$

Generate "shower" emission

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 \& PRD84(20II)054003

+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 \& CPC I78 (2008) 852

Note: other teams working on alternative strategies with similar goals Perturbation theory is solvable \rightarrow expect improvements
(Why we believe Markov + unitarity is the method of choice for complex problems)

Initialization Time
(seconds)

Time to Generate $1000 \mathrm{Z} \rightarrow \mathrm{qq}$ showers (seconds)

$$
\mathrm{Z} \rightarrow \underset{\text { gqortran } / \mathrm{g}^{++}}{(\mathrm{q}=u d \mathrm{with} \mathrm{gcc} \text { v.4.4-O2 on single } 3.06 \mathrm{GHz} \text { processor with } 4 \mathrm{~GB} \text { memory }}
$$

Generator Versions: Pythia 6.425 (Perugia 201 I tune), Pythia 8.150, Sherpa I.3.0, Vincia I. 026 (without uncertainty bands, NLL/NLC=OFF)

Uncertainties

A result is only as good as its uncertainty

Normal procedure:
Run MC 2N+I times (for central + N up/down variations)
Takes $2 \mathrm{~N}+\mathrm{I}$ times as long

+ uncorrelated statistical fluctuations

Uncertainties

A result is only as good as its uncertainty

Normal procedure:
Run MC 2N+I times (for central + Nup/down variations)
Takes $2 \mathrm{~N}+$ I times as long

+ uncorrelated statistical fluctuations

Instead: Automate \& do everything in one run

All events have central weight $=1$
Compute unitary alternative weights on the fly
\rightarrow sets of alternative weights representing variations (all with $\langle w\rangle=$ I)
Same events, so only have to be hadronized/detector-simulated ONCE!
\rightarrow Used to provide automatic Theory Uncertainty Bands in VINCIA

Quantifying Precision

Note:VINCIA so far only developed for final-state radiation (fragmentation)
Initial State under development, to follow this autumn

Hadronization

The problem:

- Given a set of partons resolved at a scale of $\sim I \mathrm{GeV}$ (the perturbative cutoff), need a "mapping" from this set onto a set of on-shell colour-singlet (i.e., confined) hadronic states.

MC models do this in three steps
I. Map partons onto continuum of highly excited hadronic states (called 'strings' or 'clusters')
2. Iteratively map strings/clusters onto discrete set of primairy hadrons (string breaks / cluster splittings / cluster decays)
3. Sequential decays into secondary hadrons (e.g., $\rho>\pi \pi, \Lambda^{0}>n \pi^{0}, \pi^{0}>\gamma \gamma, \ldots$)

Distance Scales $\sim 10^{-15} \mathrm{~m}=1$ fermi

From Partons to Strings

From Partons to Strings

```
Short Distances ~ pQCD
```


Partons

Long Distances \sim Linear Confinement

Strings (Flux Tubes), Hadrons

$$
F(r) \approx \mathrm{const}=\kappa \approx 1 \mathrm{GeV} / \mathrm{fm} \quad \Longleftrightarrow \quad V(r) \approx \kappa r
$$

- Motivates a model:
- Separation of transverse and longitudinal degrees of freedom
- Simple description as I+I dimensional worldsheet - string with Lorentz invariant formalism

The (Lund) String Model

Map:

- Quarks > String Endpoints
- Gluons > Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break constant per unit area > AREA LAW

Gluon = kink on string, carrying energy and momentum

Simple space-time picture

Details of string breaks more complicated \rightarrow tuning

Shameless Advertising

Test4Theory - A Virtual Atom Smasher

(Get yours today!) http://lhcathome2.cern.ch/

Conclusions

QCD phenomenology is witnessing a rapid evolution:

Dipole/antenna shower models, (N)LO matching, better interfaces/tuning, ... New techniques developed to compute complex QCD amplitudes (e.g., unitarity), and to embed these within shower resummations (VINCIA)
Driven by demand of high precision for LHC environment
Will automatically benefit other communities, like astro-particle and heavy-ion
Non-perturbative QCD is still hard
Lund string model remains best bet, but ~ 30 years old
Lots of input from LHC: total cross sections, min-bias, multiplicities, ID particles, correlations, shapes, you name it ... (THANKYOU to the experiments!)
New ideas (like AdS/QCD, hydro, ...) still in their infancy; but there are new ideas!
"Solving the LHC" is both interesting and rewarding
The key to high precision \rightarrow maximum information about ALL OTHER physics...

Want more information? 2012 edition of Review of Particle Physics (PDG) will include a new Section, on "Monte Carlo Event Generators", by P. Nason \& PS.

Backup Slides

Stratified Sampling

\rightarrow make it twice as likely to throw points in the peak
\rightarrow faster convergence
for same number
of function evaluations

Adaptive Sampling

Importance Sampling

Functions: Breit-Wigner

\rightarrow or throw points according to some
smooth peaked
function for which you have, or can construct, a
random number generator
(here: Gauss)

Why does this work?

Why does this work?

I)You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance)

Why does this work?

I)You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance)
2)Stratified sampling increases efficiency by combining n-point quadrature with the MC method, with further gains from adaptation

Why does this work?

I)You are inputting knowledge: obviously need to know where the peaks are to begin with ... (say you know, e.g., the location and width of a resonance)
2)Stratified sampling increases efficiency by combining n-point quadrature with the MC method, with further gains from adaptation

3)Importance sampling:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} \frac{f(x)}{g(x)} \mathrm{d} G(x)
$$

Effectively does flat MC with changed integration variables

Fast convergence if
$f(x) / g(x) \approx 1$

(Color Flow in MC Models)

"Planar Limit"

Equivalent to $\mathrm{N}_{\mathrm{c}} \rightarrow \infty$: no color interference*
*) except as reflected by the implementation of QCD coherence effects in the Monte Carlos via angular or dipole ordering

Rules for color flow:

For an entire cascade:

Coherence of pQCD cascades \rightarrow not much "overlap" between strings \rightarrow planar approx pretty good
LEP measurements in WW confirm this (at least to order $10 \% \sim 1 / N_{c}{ }^{2}$)

Hadronization

One Breakup:

$\underset{\text { Law }}{\underset{\text { Area }}{\rightarrow}} \operatorname{Prob}\left(m_{q}^{2}, p_{\perp q}^{2}\right) \propto \exp \left(\frac{-\pi m_{q}^{2}}{\kappa}\right) \exp \left(\frac{-\pi p_{\perp q}^{2}}{\kappa}\right) \underset{\text { Lund FF }}{\text { Causality }} f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)$

Iterated Sequence:

The Denominator ${ }^{6-\frac{1}{c} m^{n}}$

In a traditional parton shower, you would face the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to $\mathrm{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
\begin{aligned}
& \mathcal{F} \sim K+K+K+K \neq \begin{array}{c}
i=2 \\
\rightarrow 4 \text { terms }
\end{array} \\
& (K \sim(\pi+(K) \substack{i=1 \\
\rightarrow 2 \text { terms }} \substack{i}
\end{aligned}
$$

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

The Denominator the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to $\mathrm{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
(K \sim(X+K) \substack{i=1 \\ \rightarrow 2 \text { terms }}
$$

Parton- (or Catani-Seymour) Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms
(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

$$
\mathbf{2 n}^{\mathrm{n}}!\rightarrow \mathrm{n}!
$$

Giele, Kosower, Skands, PRD 84 (20II) 054003

(+ generic Lorentzinvariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration,"ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathbf{n !} \rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Showers

Antenna showers: one term per parton pair

$$
2^{n} n!\rightarrow n!
$$

Giele, Kosower, Skands, PRD 84 (20II) 054003

(+ generic Lorentzinvariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration,"ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathbf{n !} \rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is:
$\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms After 4 branchings: 384 terms

+ Sector antennae Larkosi, Peskin,Phys.Rev.D8I (20I0) 054010
\rightarrow I term at any order Lopez-Villarejo, Skands, JHEP IIII (201I) I50

Approximations

Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements
Plot distribution of Logıo(PS/ME)
Dead Zone: I-2\% of phase space have no strongly ordered paths leading there*
*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching

+ smooth ordering beyond matched multiplicities

$$
\frac{\hat{p}_{\perp}^{2}}{\hat{p}_{\perp}^{2}+p_{\perp}^{2}} P_{\mathrm{LL}} \quad \begin{array}{lll}
\hat{p}_{\perp}^{2} \text { last branching } \\
p_{\perp}^{2} & \text { current branching }
\end{array}
$$

Better Approximations

Distribution of Logıo(PSLo/MELo) (inverse ~ matching coefficient)

Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

+ Matching (+ full colour)

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity

For each failed branching:

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-color treatments

+ Matching

Differences explicitly matched out
(Up to matched orders)
(Can in principle also include variations of matching scheme...)

	Weight
Nominal	1
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity

For each failed branching:

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of renormalization scale (no matching)

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of "finite terms" (no matching)

