CERN ATLAS Group Meeting, Dec 20 2011, Thoiry

Modern Event Generators and Tuning Issues

Peter Skands (CERN TH)

QCD Models

Hard Process

Factorization scale

Renormalization scale(s) (& other RGE-improved couplings)

Multi-Scale Problems

Bremsstrahlung

Underlying Event

Multiple Parton Interactions

Beyond single-parton factorization: expect uncertainties > LO

Multi-Parton PDFs & Correlations (e.g., in x and impact parameter)

Perturbative vs Non-Perturbative Dynamics

Hard Scatterings ~ Rutherford with unknown K-factor

Soft Scatterings ~ Cut Pomerons?

Showers & MPI (Interleaving, showers off MPI, intertwining, rescattering, ...)

Note: crazy to require agreement between current MPI-based models and data at 5%-level or better ...

Confinement

Expect worse agreement for rare phenomena (e.g., Ω). **Order-of-magnitude** may have to be accepted.

Parton/Hadron Dynamics

Soft Non-Diffractive Scattering (incl soft diffraction)

Color Reconnections (String/Cluster reinteractions)

Note: expect larger uncertainties on very soft phenomena, rapidity gaps, ...

Soft QCD

Long-Distance Physics

- Hadron and **T** Decay Modeling
- **Bose-Einstein Correlations**
- **Elastic Scattering**
- **Soft Diffractive Scattering**
- Hadronic Re-interactions? (Boltzmann gas vs hydro ... ?)

IR Physics. Uncertainties guaranteed to be >> LO

Modeling Soft QCD

Color Connections

Color Reconnections?

Diffraction (in PYTHIA 8)

Navin, arXiv:1005.3894

Diffraction (in PYTHIA 8)

Navin, arXiv:1005.3894

Diffraction (in PYTHIA 8)

Navin, arXiv: 1005.3894

Framework needs testing and tuning

- E.g., interplay between non-diffractive and diffractive components
- + LEP tuning used directly for diffractive modeling

Hadronization preceded by shower at LEP, but not in diffraction \rightarrow dedicated diffraction tuning of fragmentation pars?

+ Little experience with new PYTHIA 8 MPI component in high-mass diffractive events

 \rightarrow This component especially needs testing and tuning

E.g., look at n_{ch} and p_T spectra in high-mass (>10GeV) diffraction

(Not important for UE as such, but can be important if using PYTHIA to simulate pile-up!)

 $\sigma_{\mathbb{P}p}$ determines level of UE in high-mass diffraction through $\langle n_{MPI} \rangle = \sigma_{jet} / \sigma_{\mathbb{P}p}$. (Larger $\sigma_{\mathbb{P}p} \rightarrow$ smaller UE)

Consequences

Harder Spectrum in High-M Diffraction

More p_T generated in high-mass diffractive events + High-mass diffraction is likely to throw something into the observable region of calorimeters etc (bias)

+ new MPI-based UE in high-M Diffraction

High-Mass diffraction now has a "pedestal" relative to low-mass diffraction, similar to the case of UE in jets vs Min-Bias \rightarrow further increases amount of activity (and dissipated energy) in high-mass diffractive events.

Little experience with new PYTHIA 8 MPI component in high-M diffractive events

→ This component especially needs testing and tuning (e.g., look at n_{ch} and p_T spectra in highmass (>10GeV) diffraction). Constrain size of "pedestal" in high-M diffraction.

Can be important if using PYTHIA to simulate pile-up!

Summary

For <u>most</u> perturbative physics

- We are still at $LO\times(N)LL$
- (Lots of theoretical activity towards improving this, e.g., VINCIA)
- For the time being, uncertainties $\sim 10\%$ or greater (with tuning)
- Multi-scale problems \rightarrow fixed order breaks down \rightarrow larger uncertainties

For UE in central region

Amazing agreement with MPI-based models \rightarrow right direction Formal accuracy still lower than for hard interaction

For non-perturbative and forward UE physics

- Single chain ~ well understood (LEP); baryons + rare phenomena (J/ ψ , Ω , etc) tough.
- Need more studies (and data) on breakup of beam remnant
- Coherence not well understood for multiple chains. **Need more studies (and data)** on role of color reconnections, and on properties of (high-mass) diffraction. New models developed in all MCs, need constraints. You have an active role to play.

Backup Slides

Scales: $\mu_R = p_T$ and Λ_{CMW}

Compute e⁺e⁻ \rightarrow **3 jets,** for arbitrary choice of μ_R (e.g., μ_R = m_Z)

One-loop correction $2Re[M^0M^{1*}]$ includes a universal $O(\alpha_s^2)$ term from integrating quark loops over all of phase space

$$n_f A_3^0 \left(\ln \left(\frac{s_{23}}{\mu_R^2} \right) + \ln \left(\frac{s_{13}}{\mu_R^2} \right) \right) \qquad \text{+ gluon loops}$$

Proportional to the β function (b₀).

Can be absorbed by using $\mu_R^4 = s_{13} s_{23} = p_T^2 s$. (~"BLM")

In an ordered shower, quark (and gluon) loops restricted by strong-ordering condition → modified to

 $\mu_R = p_T$ (but depends on ordering variable? Anyway, we're using pT here)

Additional logs induced by gluon loops can be absorbed by replacing Λ^{MS} by $\Lambda^{MC} \sim 1.5 \Lambda^{MS}$ (with mild dependence on number of flavors)

Catani, Marchesini, Webber, NPB349 (1991) 635

Note: CMW not automatic in PYTHIA, has to be done by hand, by choosing effective Λ or $\alpha_s(M_z)$ values instead of \overline{MS} ones Note 2:There are obviously still order 2 uncertainties on μ_R , but this is the background for the central choice made in showers

Interfaces to External MEs (POWHEG/SCALUP)

Slide from T. Sjöstrand, TH-LPCC workshop, August 2011, CERN

Standard Les Houches interface (LHA, LHEF) specifies startup scale SCALUP for showers, so "trivial" to interface any external program, including POWHEG. Problem: for ISR

$$p_{\perp}^{2} = p_{\perp evol}^{2} - \frac{p_{\perp evol}^{4}}{p_{\perp evol,max}^{2}}$$

$$\int d\Phi_r \frac{R(v,r)}{B(v)} \theta(k_{\rm T}(v,r) - p_{\rm T})$$
not needed if shower ordered in p_T?

i.e. p_{\perp} decreases for $\theta^* > 90^\circ$ but $p_{\perp evol}$ monotonously increasing. Solution: run "power" shower but kill emissions above the hardest one, by POWHEG's definition.

Available, for ISR-dominated, coming for QCD jets with FSR issues.

in PYTHIA 8

Note: Other things that may differ in comparisons: PDFs (NLO vs LO), Scale Choices

Interfaces to External MEs (MLM)

B. Cooper et al., arXiv:1109.5295 [hep-ph]

If using one code for MEs and another for showering

Tree-level corrections use α_s from Matrix-element Generator

Virtual corrections use α_s from Shower Generator (Sudakov)

Mismatch if the two do not use same Λ_{QCD} or $\alpha_s(m_z)$

Lönnblad Matching in PYTHIA 8

Lönnblad, JHEP 05 (2002) 046, similar to CKKW

Slide from S. Prestel

Get the state S_{+n} (with all partons above a cut t_{MS}) from a matrix element generator

Find all possible shower histories (S+0, P0),...,(S+n, Pn)

Pick one according to the probability with which the shower would have produced it

Generate the Sudakov factor by trial showering

Reweight with α_s factors and PDF factors

Start shower from last reconstructed scale

If n is the highest multiplicity, continue;

Else veto events with shower splittings above t_{MS}

Combine histograms for all MEs

 \rightarrow distributions with ME+PS merging.

Now automated in PYTHIA 8 (needs ME events in LHEF format) L. Lönnblad & S. Prestel, <u>arXiv:1109.4829</u>

Pythia 6: The Perugia Variations

"Tuning MC Generators: The Perugia Tunes" - PRD82 (2010) 074018

Central Tune + 9 variations

Perugia 2011 Tune Set

Note: no variation of hadronization parameters! (sorry, ten was already a lot)

MSTP(5) = ...

		0	
(350)	Perugia 2011	Central Perugia 2011 tune (CTEQ5L)	
(351)	Perugia 2011 radHi	Variation using $\alpha_s(\frac{1}{2}p_{\perp})$ for ISR and FSR	Harder radiation
(352)	Perugia 2011 radLo	Variation using $\alpha_s(\bar{2}p_{\perp})$ for ISR and FSR	Softer radiation
(353)	Perugia 2011 mpiHi	Variation using $\Lambda_{\rm QCD} = 0.26 {\rm GeV}$ also for MPI	UE more "jetty'
(354)	Perugia 2011 noCR	Variation without color reconnections	Softer hadrons
(355)	Perugia 2011 M	Variation using MRST LO** PDFs	UE more "jetty'
(356)	Perugia 2011 C	Variation using CTEQ 6L1 PDFs	Recommended
(357)	Perugia 2011 T16	Variation using $PARP(90)=0.16$ scaling away fr	$om 7 { m TeV}$
(358)	Perugia 2011 T 32	Variation using $PARP(90)=0.32$ scaling away fr	$om 7 { m TeV}$
(359)	Perugia 2011 Tevatron	Variation optimized for Tevatron	\sim low at LHC

Can be obtained in standalone Pythia from 6.4.25+

MSTP(5) = 350

Perugia 2011

Perugia 2011 radHi

MSTP(5) = 351

Perugia 2011 radLo

MSTP(5) = 352

Tunes of PYTHIA 8 : Corke & Sjöstrand - JHEP 03 (2011) 032 & JHEP 05 (2011) 009

(Multiple Parton Interactions)

Note: will change name from "MI" to "MPI" in PYTHIA 8.160

(Hadronization)

+ String-Fragmentation Parameters

See, e.g., Buckley et al., EPJC65 (2010) 331 and Phys.Rept. 504 (2011) 145

Important task: evaluate whether LEP/LHC universality holds

E.g., use universality-testing technique proposed in Schulz & PS, EPJ C71 (2011) 1644

For percent-level m_{top}, must also consider non-perturbative uncertainties

E.g., Central vs NOCR, etc, discussed in PS & Wicke, EPJ C52 (2007) 133

PYTHIA Models

				LHC			
No to	2002	2006	2008	2009	2010	2011	
рт-ordered РҮТНІА 6		Tune S0 Tune S0A	SPro	ATLAS MC09 Perugia 0 (+ Variations)	AMBTI ZI, Z2 Perugia 2010	AUET2B? Perugia 2011 (+ Variations)	
Q-ordered PYTHIA 6	Tune A (default)	DW(T) D6(T)	DPro	Pro-Q2O	2))	Q2-LHC ?	
pT-ordered PYTHIA 8				Tune I	2C 2M	4C, 4Cx A1, AU1 A2, AU2	

Note: tunes differ significantly in which data sets they include

LEP fragmentation parameters Level of Underlying Event & Minimum-bias Tails Soft part of Drell-Yan pT spectrum

PYTHIA Models

	A	DW, D6,	S0, S0A	MC09(c)	Pro, Perugia 0, Tune I, 2C, 2M	АМВТІ	Perugia 2010	Perugia 2011	ZI, Z2	4C, 4Cx	AUET2B, A2, AU2
LEP					v		~	~		~	~
TeV MB			~	~	~		~	~		(🖌)	?
TeV UE	~	~		~	~		~	~		(🖌)	✓?
TeV DY		~	~	~	~	~	~	~	~	✓	~
LHC MB						~	~	~		~	?
LHC UE								~	~		~

What Works*

*) if you use an up-to-date tune. Here comparing to PY6 default (~ Tune A) to show changes.

Underlying Event & Jet Shapes

PS: yes, we should update the PYTHIA 6 defaults ...

P. Skands - PYTHIA

What Works*

*) if you use an up-to-date tune. Here comparing to PY6 default (~ Tune A) to show changes.

PS: yes, we should update the PYTHIA 6 defaults ...

P. Skands - PYTHIA

What Kind of Works*

*) if you use an up-to-date tune. Here comparing to PY6 default (~ Tune A) to show changes.

Minimum-Bias Multiplicities

(here showing as inclusive as possible)

PS: yes, we should update the PYTHIA 6 defaults ...

pT Spectra / Mass Dependence

Must be compared with LEP

P. Skands - PYTHIA

Plots from mcplots.cern.ch

Strangeness and Baryons

Tried to learn from early data, but still not there ...

P. Skands - PYTHIA

Plots from mcplots.cern.ch

Very Soft Structure

Minimum-Bias too lumpy?

