Peter Skands (CERN)

VINCIA

$$
\text { Peter } S k \text { a } n d s \quad(C E R N)
$$

VINCIA

$$
\text { Peter } S k \text { a } n d s \quad(C E R N)
$$

VINCIA

$$
\text { Peter } S k \text { a } n d s \quad(C E R N)
$$

PM Perturbative Evolution $2 \operatorname{Re}\left[M_{H}^{(1)} M_{H}^{(0) *}\right]$

Factorization Scale

VINCIA

$$
\text { Peter } S k \text { a } n d s \quad(C E R N)
$$

$\left|M_{H}^{(0)}\right|^{2}$
Perturbative Evolution
$2 \operatorname{Re}\left[M_{H}^{(1)} M_{H}^{(0) *}\right]$

Factorization Scale

VINCIA

$$
\text { Peter } S k \text { a } n d s \text { (CERN) }
$$

Why?

Jet Substructure

Underlying Event \& Jet Calibration

Hadronization

Structure of QCD

Why?

Jet Substructure

Underlying Event \& Jet Calibration

Hadronization

Structure of QCD

Why?

Hadronization

Underlying Event \& Jet Calibration

Structure of QCD

Why?

Jet Substructure

Hadronization

Structure of QCD

Better control of perturbative part
\rightarrow better constraints on non-perturbative part

Why?

Jet Substructure

Hadronization

Better control of perturbative part
\rightarrow better constraints on non-perturbative part

Underlying Event \& Jet Calibration

VINCIA

What is it?

Plug-in to PYTHIA 8 (http://projects.hepforge.org/vincia)

What does it do?

"Matched Markov antenna showers"
Improved parton showers

+ Re-interprets tree-level matrix elements as $2 \rightarrow n$ antenna functions
+ Extends matching to soft region (no "matching scale")
Extensive (and automated) uncertainty estimates
Systematic variations of shower functions, evolution variables, μ_{R}, etc.
\rightarrow A vector of output weights for each event (central value $=$ unity $=$ unweighted)

Who is doing it?

GEEKS: Giele, Kosower, Skands + Gehrmann-de-Ridder \& Ritzmann (mass effects), Lopez-Villarejo ("sector showers"), Hartgring \& Laenen (NLO multileg)

pQCD with Markov Chains

Starting Point: reformulate perturbative series as Markov Chain
~ all-orders parton shower with all-orders matrix-element corrections

For Each "Evolution Step" = increase in parton multiplicity (on-shell)
Cover all of phase space with (large) trial overestimate = "approximate" Compute the physical evolution probability using ...

$$
\text { Matched }=\text { Approximate } \frac{\text { Exact }}{\text { Approximate }}
$$

\rightarrow Must be able to compute both numerator and denominator

pQCD with Markov Chains

Starting Point: reformulate perturbative series as Markov Chain
~ all-orders parton shower with all-orders matrix-element corrections

For Each "Evolution Step" = increase in parton multiplicity (on-shell)
Cover all of phase space with (large) trial overestimate = "approximate"
Compute the physical evolution probability using ..

Matched $=$ Approximate $\frac{\text { Exact }}{\text { Approximate }}$
\rightarrow Must be able to compute both numerator and denominator and ME corrections,

pQCD with Markov Chains

Starting Point: reformulate perturbative series as Markov Chain
~ all-orders parton shower with all-orders matrix-element corrections

For Each "Evolution Step" = increase in parton multiplicity (on-shell)
Cover all of phase space with (large) trial overestimate = "approximate"
Compute the physical evolution probability using ...

\rightarrow Must be able to compute both numerator and denominator and ME corrections,
and by POWHEG for virtual ones

Also similar to GenEva?

Unitarity \rightarrow No need to impose "matching scale" (Matching corrections applied directly to Markov chain as it evolves
\rightarrow self-regulating \rightarrow can be applied over all of phase space, also inside jets)

pQCD with Markov Chains

Starting Point: reformulate perturbative series as Markov Chain
~ all-orders parton shower with all-orders matrix-element corrections

For Each "Evolution Step" = increase in parton multiplicity (on-shell)
Cover all of phase space with (large) trial overestimate = "approximate"
Compute the physical evolution probability using ...

\rightarrow Must be able to compute both numerator and denominator

> | Already widely |
| :---: |
| used at first order: |
| E.g., by PYTHIA for mass |
| and ME corrections, |
| and by POWHEG for |
| virtual ones |
| Also similar to GenEva? |

[^0]
The Denominator

Number of Histories:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to $\mathbf{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
\begin{aligned}
& E \sim K+K+K+K K \begin{array}{|c}
\substack{i=2 \\
\rightarrow 4 \text { terms }}
\end{array} \\
& (N \sim M+K) \substack{\begin{subarray}{c}{i=1 \\
\rightarrow 2 \text { terms }} }} \end{subarray} \substack{ \\
\hline}
\end{aligned}
$$

The Denominator

Number of Histories:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last \rightarrow proliferation of terms

Number of histories contributing to $\mathrm{n}^{\text {th }}$ branching $\propto \mathbf{2}^{\mathbf{n}} \mathbf{n}$!

$$
\begin{aligned}
& E \sim Q+Q+Q \\
& j=2 \\
& \rightarrow 4 \text { terms } \\
& (G \sim M+K) \xrightarrow[\substack{j=1 \\
\rightarrow 2 \text { terms }}]{\substack{i \\
\hline}} \\
& \text { Parton- or Catani-Seymour Shower: } \\
& \text { After } 2 \text { branchings: } 8 \text { terms } \\
& \text { After } 3 \text { branchings: } 48 \text { terms } \\
& \text { After } 4 \text { branchings: } 384 \text { terms }
\end{aligned}
$$

Matched Markovian Antenna Showers

Parton and CS showers: $\mathbf{2}^{\mathbf{n}} \mathbf{n}$! One term per parton (two for gluons)

Antenna showers: $\mathbf{2}^{\mathrm{n}} \mathrm{n}!\rightarrow \mathbf{n !}$
One term per parton pair

Matched Markovian Antenna Showers

Parton and CS showers: $\mathbf{2}^{\mathbf{n}} \mathbf{n}$! One term per parton (two for gluons)

Antenna showers: $\mathbf{2}^{\mathrm{n}} \mathrm{n}!\rightarrow \mathbf{n !}$
One term per parton pair

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration, "ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathbf{n !} \rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is: $\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Showers

Parton and CS showers: $\mathbf{2}^{\mathbf{n}} \mathrm{n}$!
One term per parton (two for gluons)

Antenna showers: $\mathbf{2}^{\mathbf{n}} \mathbf{n}!\rightarrow \mathbf{n !}$
One term per parton pair

+ Change "shower restart" to Markov criterion:
Given an n-parton configuration, "ordering" scale is

$$
Q_{\text {ord }}=\min \left(Q_{E I}, Q_{E 2}, \ldots, Q_{E n}\right)
$$

Unique restart scale, independently of how it was produced

+ Matching: $\mathbf{n !} \rightarrow \mathbf{n}$
Given an n-parton configuration, its phase space weight is: $\left|M_{n}\right|^{2}$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms

Parton- or Catani-Seymour Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Approximations

Distribution of Logio(PSLo/MELo) (inverse ~ matching coefficient)

Better Approximations

Distribution of Logio(PSLo/MELo) (inverse ~ matching coefficient)

GEEKS (Giele, Kosower, Skands): arXiv:1102.2126

+ Matching (+ full colour)

GEEKS (Giele, Kosower, Skands): arXiv:1102.2126

(Speed)

Matched through:	$\mathrm{Z} \rightarrow 3$	$Z \rightarrow 4$	$Z \rightarrow 5$	$Z \rightarrow 6$
Pythia 6 (initialization time = zero) Pythia 8 (initialization time = zero)	0.19 0.20	ms/event $\mathrm{Z} \rightarrow \mathrm{qq}+$ shower. Matched and unweighted. Hadronization off gfortran/g++ with gcc v.4.4-O2 on single 3.06 GHz processor with 4GB memory gorrtang++ with gcc v.4.4-O2 on single 3.06 GHz processor with 4GB memory		
Vincia (initialization time $=$ zero)	0.24	0.62	5.60	112.50
Sherpa $\left(Q_{\text {macth }}=5 \mathrm{GeV}\right)$ * + intitialization time	$\begin{gathered} 5.15^{*} \\ 90,000 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 53.00^{*} \\ & 420,000 \mathrm{~ms} \end{aligned}$	220.00^{*} $1,320,000 \mathrm{~ms}$	$\begin{gathered} 400.00^{*} \\ 7,920,000 \mathrm{~ms} \end{gathered}$

Generator Versions: Pythia 6.425 (with Perugia 201 I tune), Pythia 8.150, Sherpa I.3.0 ('not including initialization), Vincia I. 026 (NLL,NLC, and uncertainties OFF)
(+ working with J. Lopez-Villarejo at CERN to further increase multi-parton matching speed)

Uncertainties

Uncertainty Variations

A result is only as good as its uncertainty

Normal procedure:
Run MC $2 \mathrm{~N}+I$ times (for central +N up/down variations)
Takes $2 \mathrm{~N}+1$ times as long

+ uncorrelated statistical fluctuations

Uncertainty Variations

A result is only as good as its uncertainty

Normal procedure:
Run MC $2 \mathrm{~N}+I$ times (for central +N up/down variations)
Takes $2 \mathrm{~N}+1$ times as long

+ uncorrelated statistical fluctuations

Automate and do everything in one run

VINCIA: all events have weight $=1$
GEEKS (Giele, Kosower, Skands): arXiv:1102.2126
Compute unitary alternative weights on the fly
\rightarrow sets of alternative weights representing variations (all with $\langle w\rangle=1$) Same events, so only have to be hadronized/detector-simulated ONCE!

MC with Automatic Uncertainty Bands

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-colour treatments

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-colour treatments

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity

For each failed branching:

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

Uncertainties

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-colour treatments
+ Matching
Differences explicitly matched out
(Up to matched orders)
(Can in principle also include variations of matching scheme...)

	Weight
Nominal	I
Variation	$P_{2}=\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}$

+ Unitarity

For each failed branching:

$$
P_{2 ; \mathrm{no}}=1-P_{2}=1-\frac{\alpha_{s 2} a_{2}}{\alpha_{s 1} a_{1}} P_{1}
$$

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of renormalization scale (no matching)

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of "finite terms" (no matching)

Putting it Together

VinciaMatching:order $=0$
VinciaMatching:order $=3$

VINCIA STATUS

PLUG-IN TO PYTHIA 8
STABLE AND RELIABLE FOR FINALSTATE JETS (E.g. lep)

AUTOMATIC MATCHING AND UNCERTAINTY BANDS

IMPROVEMENTS IN SHOWER (SMOOTH ORDERING, NLC, MATCHING, ...)
PAPER ON MASS EFFECTS~READY
(WITH A. GEHRMANN-DE-RIDDER \& M. RITZMANN)

NEXT STEPS

MULTI-LEG ONE-LOOP MATCHING
(WITH L. HARTGRING \& E. LAENEN, NIKHEF)

"SECTOR SHOWERS"

(WITH J. LOPEZ-VILLAREJO, CERN)

\rightarrow INITIAL-STATE SHOWERS

(WITH W. GIELE, D. KOSOWER)

VINCIA STATUS

stroter

\#1 GUEST RATED SHOWERHEAD - ALL NEW

NEXT STEPS

MULTI-LEG ONE-LOOP MATCHING
(WITH L. HARTGRING \& E. LAENEN, NIKHEF)
"SECTOR SHOWERS"
(WITH J. LOPEZ-VILLAREJO, CERN)
\rightarrow INITIAL-STATE SHOWERS
(WITH W. GIele, D. Kosower)
HTTP://PROJECTS.HEPFORGE.ORG/VINCIA

pQCD as Markov Chain

Start from Born Level:

pQCD as Markov Chain

Start from Born Level:

Insert Evolution Operator, S:

$$
\left.\frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\mathcal{S}}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right)
$$

Think: starting a shower off an incoming on-shell momentum configuration Postpone evaluating observable until shower "finished"

The Evolution Operator

Depends on Evolution Scale : $\mathbf{Q E}_{\mathbf{E}}$

$$
\mathcal{S}\left(\{p\}_{H}, s, Q_{E}^{2}, \mathcal{O}\right)=\underbrace{\Delta^{\kappa}\left(\{p\}_{H}, s, Q_{E}^{2}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right)}_{H+0 \text { exclusive above } Q_{E}}
$$

$H+1$ inclusive above Q_{E}

Legend:

Δ represents no-evolution probability (Sudakov): conserves probability = preserves event weights

The Evolution Operator

Depends on Evolution Scale : $\mathbf{Q E}_{\mathbf{E}}$

$$
\mathcal{S}\left(\{p\}_{H}, s, Q_{E}^{2}, \mathcal{O}\right)=\underbrace{\Delta^{*}\left(\{p\}_{H}, s, Q_{E}^{2}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right)}_{H+0 \text { exclusive above } Q_{E}}
$$

Legend:

Δ represents no-evolution probability (Sudakov): conserves probability = preserves event weights
$S_{r}=$ Emission probability (partitioned among radiators r)
According to best known approximation to $\left|H+| |^{2}\right.$ (e.g., ME or LL shower)

(Expand S to First Order)

Equivalent to Sjöstrand/POWHEG

$$
\mathcal{S}^{(1)}\left(\{p\}_{H}, s, Q_{E}^{2}, \mathcal{O}\right)=\left(1+K_{H}^{(1)}-\int_{Q_{E}^{2}}^{s} \frac{\mathrm{~d} \Phi_{H+1}}{\mathrm{~d} \Phi_{H}} \frac{\left|M_{H+1}^{(0)}\right|^{2}}{\left|M_{H}^{(0)}\right|^{2}}\right)
$$

$$
+\int_{Q_{E}^{2}}^{s} \frac{\mathrm{~d} \Phi_{H+1}}{\mathrm{~d} \Phi_{H}} \frac{\left|M_{H+1}^{(0)}\right|^{2}}{\left|M_{H}^{(0)}\right|^{2}} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H+1}\right)\right)
$$

(Expand S to First Order)

Equivalent to Sjöstrand/POWHEG

$$
\begin{aligned}
& \mathcal{S}^{(1)}\left(\{p\}_{H}, s, Q_{E}^{2}, \mathcal{O}\right)=\left(1+K_{H}^{(1)}\right.\left.-\int_{Q_{E}^{2}}^{s} \frac{\text { "NLO" virtual correction }}{\mathrm{d} \Phi_{H+1}} \frac{\left|M_{H+1}^{(0)}\right|^{2}}{\left|M_{H}^{(0)}\right|^{2}}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \\
& \uparrow \text { Unitarity }
\end{aligned}
$$

Virtual Correction (NLO normalization)

$$
\underbrace{\frac{2 \operatorname{Re}\left[M_{H}^{(0)} M_{H}^{(1) *}\right]}{\left|M_{H}^{(0)}\right|^{2}}}_{\frac{a}{\epsilon^{2}}+\frac{b}{\epsilon}+c+\mathcal{O}(\epsilon)}=K_{c^{-}}^{\substack{(1)}}-\underbrace{\int_{0}^{s} \frac{\mathrm{~d} \Phi_{H+1}}{\mathrm{~d} \Phi_{H}} \frac{\left|M_{H+1}^{(0)}\right|^{2}}{\left|M_{H}^{(0)}\right|^{2}}}_{\frac{a}{\epsilon^{2}}+\frac{b}{\epsilon}+c^{\prime}+\mathcal{O}(\epsilon)}
$$

Simple Solution

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching (revert to strong ordering beyond matched multiplicities)

Better Solution

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space Overcounting removed by matching

+ smooth ordering beyond matched multiplicities

$$
\frac{\hat{p}_{\perp}^{2}}{\hat{p}_{\perp}^{2}+p_{\perp}^{2}} P_{\mathrm{LL}} \quad \begin{array}{lll}
\hat{p}_{\perp}^{2} & \text { last branching } \\
p_{\perp}^{2} & \text { current branching }
\end{array}
$$

(Subleading Singularities)

Isolate double-collinear region:

LEP event shapes

PYTHIA 8 already doing a very good job

VINCIA adds uncertainty bands + can look at more exclusive observables?

Multijet resolution scales

4-Jet Angles

4-jet angles

Sensitive to

 polarization effects
Good News

VINCIA is doing reliably well
Non-trivial verification that shower+matching is working, etc.

Higher-order matching needed?

PYTHIA 8 already doing a very good job on these observables

Interesting to look at more exclusive observables, but which ones?

[^0]: Unitarity \rightarrow No need to impose "matching scale" (Matching corrections applied directly to Markov chain as it evolves
 \rightarrow self-regulating \rightarrow can be applied over all of phase space, also inside jets)
 \rightarrow One single unweighted event sample (Effectively, n-parton samples use parton shower itself as phase space generator $=$ highly efficient "multi-channel" integration \rightarrow speed gains expected, + unitarity \rightarrow unit-weights)

