

Jet Substructure

Underlying Event & Jet Calibration

Hadronization

Structure of QCD

Better control of perturbative part→ better constraints on non-perturbative part

VINCIA

What is it?

Plug-in to PYTHIA 8 (http://projects.hepforge.org/vincia)

What does it do?

"Matched Markov antenna showers"

Improved parton showers

+ Re-interprets tree-level matrix elements as $2 \rightarrow n$ antenna functions

- + Extends matching to soft region (no "matching scale")
- Extensive (and automated) uncertainty estimates

Systematic variations of shower functions, evolution variables, μ_R , etc.

 \rightarrow A vector of output weights for each event (central value = unity = unweighted)

Who is doing it?

GEEKS: Giele, Kosower, Skands + Gehrmann-de-Ridder & Ritzmann (mass effects), Lopez-Villarejo ("sector showers"), Hartgring & Laenen (NLO multileg)

Starting Point: reformulate perturbative series as Markov Chain

 \sim all-orders parton shower with all-orders matrix-element corrections

Starting Point: reformulate perturbative series as Markov Chain

 \sim all-orders parton shower with all-orders matrix-element corrections

Starting Point: reformulate perturbative series as Markov Chain

 \sim all-orders parton shower with all-orders matrix-element corrections

Unitarity \rightarrow **No need to impose "matching scale"** (Matching corrections applied directly to Markov chain as it evolves \rightarrow self-regulating \rightarrow can be applied over all of phase space, **also inside jets**)

Starting Point: reformulate perturbative series as Markov Chain

 \sim all-orders parton shower with all-orders matrix-element corrections

Unitarity \rightarrow **No need to impose "matching scale"** (Matching corrections applied directly to Markov chain as it evolves \rightarrow self-regulating \rightarrow can be applied over all of phase space, **also inside jets**)

 \rightarrow **One single unweighted event sample** (Effectively, n-parton samples use parton shower itself as phase space generator = highly efficient "multi-channel" integration \rightarrow speed gains expected, + unitarity \rightarrow unit-weights)

The Denominator

Number of Histories:

Existing parton showers are not really Markov Chains Further evolution (restart scale) depends on which branching happened last → proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^n n!$

The Denominator

Number of Histories:

Existing parton showers are not really Markov Chains Further evolution (restart scale) depends on which branching happened last → proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^n n!$

$$\underbrace{F}_{i} = \underbrace{F}_{i} + \underbrace{F}_{i}$$

 $\begin{array}{c} j = 2 \\ \rightarrow 4 \text{ terms} \end{array}$

Parton- or Catani-Seymour Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Matched Markovian Antenna Showers

Parton and CS showers: 2ⁿn!

One term per parton (two for gluons)

Matched Markovian Antenna Showers

Parton and CS showers: 2ⁿn! One term per parton (two for gluons) Antenna showers: $2^n n! \rightarrow n!$ One term per parton *pair*

+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{\text{ord}} = \min(Q_{\text{E1}}, Q_{\text{E2}}, \dots, Q_{\text{En}})$

Unique restart scale, independently of how it was produced

+ Matching: $n! \rightarrow n$

Given an *n*-parton configuration, its phase space weight is:

 $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Showers

Parton and CS showers: 2ⁿn! One term per parton (two for gluons)

Antenna showers: $2^n n! \rightarrow n!$ One term per parton *pair*

+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{\text{ord}} = \min(Q_{\text{E1}}, Q_{\text{E2}}, \dots, Q_{\text{En}})$

Unique restart scale, independently of how it was produced

+ Matching: $n! \rightarrow n$

Given an *n*-parton configuration, its phase space weight is:

 $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower: After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms Parton- or Catani-Seymour Shower: After 2 branchings: 8 terms After 3 branchings: 48 terms After 4 branchings: 384 terms

Approximations

Better Approximations

Distribution of Log₁₀(PS_{LO}/ME_{LO}) (inverse ~ matching coefficient)

+ Matching (+ full colour)

(Speed)

<u>Matched through:</u>	Z→3	Z→4	Z→5	Z→6
Pythia 6 (initialization time = zero)	0.19	$ms/event$ $Z \rightarrow qq + shower. Matched and unweighted. Hadronization off$ $gfortran/g++ with gcc v.4.4 - O2 on single 3.06 GHz processor with 4GB memory$		
Pythia 8 (initialization time = zero)	0.20			
Vincia (initialization time = zero)	0.24	0.62	5.60	112.50
Sherpa ($Q_{match} = 5 \text{ GeV}$)	5.15*	53.00*	220.00*	400.00*
* + initialization time	90,000 ms	420,000 ms	1,320,000 ms	7,920,000 ms

Generator Versions: Pythia 6.425 (with Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0 (*not including initialization), Vincia 1.026 (NLL,NLC, and uncertainties OFF)

(+ working with J. Lopez-Villarejo at CERN to further increase multi-parton matching speed)

Uncertainty Variations

A result is only as good as its uncertainty

- Normal procedure:
 - Run MC 2N+1 times (for central + N up/down variations)
 - Takes 2N+1 times as long
 - + uncorrelated statistical fluctuations

Uncertainty Variations

A result is only as good as its uncertainty

- Normal procedure:
 - Run MC 2N+1 times (for central + N up/down variations)
 - Takes 2N+1 times as long
 - + uncorrelated statistical fluctuations

Automate and do everything in one run

VINCIA: all events have weight = 1

GEEKS (Giele, Kosower, Skands): arXiv:1102.2126

Compute *unitary* alternative weights on the fly

 \rightarrow sets of alternative weights representing variations (all with $\langle w \rangle = I$) Same events, so only have to be hadronized/detector-simulated ONCE!

MC with Automatic Uncertainty Bands

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-colour treatments

	Weight	
Nominal		
Variation	$P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$	

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-colour treatments

	Weight	
Nominal		
Variation	$P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$	

+ Unitarity

For each *failed* branching:

$$P_{2;\text{no}} = 1 - P_2 = 1 - \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$$

For each branching, recompute weight for:

- Different renormalization scales
- Different antenna functions
- Different ordering criteria
- Different subleading-colour treatments

+ Matching

Differences explicitly matched out

(Up to matched orders)

(Can in principle also include variations of matching scheme...)

	Weight	
Nominal		
Variation	$P_2 = \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$	

+ Unitarity

For each *failed* branching:

$$P_{2;\text{no}} = 1 - P_2 = 1 - \frac{\alpha_{s2}a_2}{\alpha_{s1}a_1} P_1$$

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of renormalization scale (no matching)

Automatic Uncertainties

Vincia:uncertaintyBands = on

Variation of "finite terms" (no matching)

Putting it Together

VinciaMatching:order = 0

VinciaMatching:order = 3

 $1/N_{a}^{2}$

0.4

GEEKS (Giele, Kosower, Skands): arXiv:1102.2126

VINCIA STATUS

PLUG-IN TO PYTHIA 8

STABLE AND RELIABLE FOR FINAL-STATE JETS (E.G., LEP)

Automatic matching and Uncertainty bands

IMPROVEMENTS IN SHOWER (SMOOTH ORDERING, NLC, MATCHING, ...)

PAPER ON MASS EFFECTS ~ READY (with A. Gehrmann-de-Ridder & M. Ritzmann)

NEXT STEPS

MULTI-LEG ONE-LOOP MATCHING

(with L. Hartgring & E. Laenen, NIKHEF)

"SECTOR SHOWERS"

(WITH J. LOPEZ-VILLAREJO, CERN)

→ INITIAL-STATE SHOWERS

(WITH W. GIELE, D. KOSOWER)

THE VINCIA CODE

HTTP://PROJECTS.HEPFORGE.ORG/VINCIA

GEEKS (Giele, Kosower, Skands): arXiv:1102.2126

VINCIA STATUS

SHORER

#1 GUEST RATED SHOWERHEAD - ALL NEW

NEXT STEPS

MULTI-LEG ONE-LOOP MATCHING

(with L. Hartgring & E. Laenen, NIKHEF)

"SECTOR SHOWERS"

(with J. Lopez-Villarejo, CERN)

→ INITIAL-STATE SHOWERS

(WITH W. GIELE, D. KOSOWER)

THE VINCIA CODE

HTTP://PROJECTS.HEPFORGE.ORG/VINCIA

Backup Slides

pQCD as Markov Chain

pQCD as Markov Chain

Think: starting a shower off an incoming on-shell momentum configuration Postpone evaluating observable until shower "finished"

The Evolution Operator

 Δ represents *no-evolution* probability (Sudakov): conserves probability = preserves event weights

S_r = Emission probability (partitioned among radiators r)

According to best known approximation to |H+1|² (e.g., ME or LL shower)

The Evolution Operator

- Δ represents *no-evolution* probability (Sudakov): conserves probability = preserves event weights
- $S_r = Emission probability$ (partitioned among radiators r)

According to best known approximation to $|H+I|^2$ (e.g., ME or LL shower)

(Expand S to First Order)

Equivalent to Sjöstrand/POWHEG

$$S^{(1)}(\{p\}_{H}, s, Q_{E}^{2}, \mathcal{O}) = \left(1 + K_{H}^{(1)} - \int_{Q_{E}^{2}}^{s} \frac{d\Phi_{H+1}}{d\Phi_{H}} \frac{|M_{H+1}^{(0)}|^{2}}{|M_{H}^{(0)}|^{2}}\right) \delta(\mathcal{O} - \mathcal{O}(\{p\}_{H}))$$

$$\downarrow \text{Unitarity}$$

$$+ \int_{Q_{E}^{2}}^{s} \frac{d\Phi_{H+1}}{d\Phi_{H}} \frac{|M_{H+1}^{(0)}|^{2}}{|M_{H}^{(0)}|^{2}} \delta(\mathcal{O} - \mathcal{O}(\{p\}_{H+1}))$$

$$Torbjörn's trick$$

Virtual Correction (NLO normalization)

$$\frac{2\operatorname{Re}[M_{H}^{(0)}M_{H}^{(1)*}]}{|M_{H}^{(0)}|^{2}} = K_{H}^{(1)} - \int_{0}^{s} \frac{\mathrm{d}\Phi_{H+1}}{\mathrm{d}\Phi_{H}} \frac{|M_{H+1}^{(0)}|^{2}}{|M_{H}^{(0)}|^{2}}$$

$$\underbrace{\frac{a}{\epsilon^{2}} + \frac{b}{\epsilon} + c + \mathcal{O}(\epsilon)}_{c} \quad c \quad c \quad \frac{a}{\epsilon^{2}} + \frac{b}{\epsilon} + c' + \mathcal{O}(\epsilon)$$

(Expand S to First Order)

Equivalent to Sjöstrand/POWHEG

$$S^{(1)}(\{p\}_{H}, s, Q_{E}^{2}, \mathcal{O}) = \left(1 + \frac{K_{H}^{(1)}}{K_{H}^{(1)}} - \int_{Q_{E}^{2}}^{s} \frac{\mathrm{d}\Phi_{H+1}}{\mathrm{d}\Phi_{H}} \frac{|M_{H+1}^{(0)}|^{2}}{|M_{H}^{(0)}|^{2}}\right) \delta(\mathcal{O} - \mathcal{O}(\{p\}_{H}))$$

$$\downarrow \text{Unitarity}$$

$$+ \int_{Q_{E}^{2}}^{s} \frac{\mathrm{d}\Phi_{H+1}}{\mathrm{d}\Phi_{H}} \frac{|M_{H+1}^{(0)}|^{2}}{|M_{H}^{(0)}|^{2}} \frac{\delta(\mathcal{O} - \mathcal{O}(\{p\}_{H+1}))}{|M_{H}^{(0)}|^{2}}$$

$$Torbjörn's trick$$

Virtual Correction (NLO normalization)

$$\frac{2\operatorname{Re}[M_{H}^{(0)}M_{H}^{(1)*}]}{|M_{H}^{(0)}|^{2}} = K_{H}^{(1)} - \int_{0}^{s} \frac{\mathrm{d}\Phi_{H+1}}{\mathrm{d}\Phi_{H}} \frac{|M_{H+1}^{(0)}|^{2}}{|M_{H}^{(0)}|^{2}}$$

$$\underbrace{\frac{a}{\epsilon^{2}} + \frac{b}{\epsilon} + c + \mathcal{O}(\epsilon)}_{c} \quad \underbrace{c}^{c} \quad \underbrace{\frac{a}{\epsilon^{2}} + \frac{b}{\epsilon} + c' + \mathcal{O}(\epsilon)}_{c}$$

Simple Solution

Generate Trials without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching

(revert to strong ordering beyond matched multiplicities)

Generate Trials without imposing strong ordering

LEP event shapes

PYTHIA 8 already doing a very good job

VINCIA adds uncertainty bands + can look at more exclusive observables?

Multijet resolution scales

 y_{45} = scale at which 5th jet becomes resolved ~ "scale of 5th jet"

4-Jet Angles

4-jet angles

Sensitive to polarization effects

Good News

VINCIA is doing reliably well

Non-trivial verification that shower+matching is working, etc.

Higher-order matching needed?

PYTHIA 8 already doing a very good job on these observables

Interesting to look at more exclusive observables, but which ones?