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P. Skands

VINCIA

What is it?
Plug-in to PYTHIA 8 (http://projects.hepforge.org/vincia)

What does it do?
“Matched Markov antenna showers”

Improved parton showers

+ Re-interprets tree-level matrix elements as 2→n antenna functions
+ Extends matching to soft region (no “matching scale”)

Extensive (and automated) uncertainty estimates
Systematic variations of shower functions, evolution variables, μR , etc. 

→ A vector of output weights for each event (central value = unity = unweighted)

Who is doing it?
GEEKS: Giele, Kosower, Skands + Gehrmann-de-Ridder & Ritzmann (mass 
effects), Lopez-Villarejo (“sector showers”), Hartgring & Laenen (NLO multileg) 

3

The VINCIA Code 

http://projects.hepforge.org/vincia/
http://projects.hepforge.org/vincia/


P. Skands

For Each “Evolution Step”  =  increase in parton multiplicity (on-shell)

Cover all of phase space with (large) trial overestimate = “approximate”

Compute the physical evolution probability using ...

pQCD with Markov Chains

Starting Point: reformulate perturbative series as Markov Chain

~ all-orders parton shower with all-orders matrix-element corrections

4

for an arbitrary tree-level matching strategy, and in the scheme developed here becomes virtually iden-
tical to the POWHEG one. We therefore do not comment on this aspect here, but note that we plan to
return to the inclusion of further loop corrections, at the multileg level, in an upcoming study.

5.1 Matching Strategies

Given a parton shower and a matrix-element generator, there are fundamentally three different ways in
which we shall consider matching the two:

1. Unitarity: The oldest approach [25, 26] consists of working out the shower approximation to a
given fixed order, and correcting the shower splitting functions at that order by a multiplicative
factor given by the ratio of the matrix element to the shower approximation, phase-space point by
phase-space point. We may sketch this as

Matched = Approximate
Exact

Approximate
. (100)

That is, the shower approximation is essentially used as a pre-weighted (stratified) all-orders phase
space generator, on which a more exact answer can subsequently be imprinted order by order in
perturbation theory5. In our notation [29], this translates to applying the following correction
factor to each antenna function ai (or any other kind of shower splitting kernel)

ai → aiP
ME
n , PME

n =
|Mn|2

�
j aj |Mn−1|2

, (101)

where the sum over j runs over all possible ways the shower could have generated the n-parton
state from n− 1 partons6. When these correction factors are inserted back into the shower evolu-
tion, they guarantee that the shower evolution off n− 1 partons correctly reproduces the n-parton
matrix elements, without the need to generate any separate n-parton samples. Moreover, since
the corrections modify the actual shower evolution kernels, the corrections are resummed in the
Sudakov exponential, and finally, since the shower is unitary, an initially unweighted sample of
(n−1)-parton configurations remains unweighted, with no need for a separate event-unweighting
or event-rejection step. (Technically, the exponentiation allows beyond-LL corrections to be re-
summed, thus improving the logarithmic accuracy of the result, while the explicit constraint of
unitarity ensures that the additional non-logarithmic terms that are also exponentiated by this pro-
cedure does not lead to disasters.) There are thus several quite desirable features to this kind of
matching strategy, which is currently employed by PYTHIA, POWHEG, and VINCIA. However,
since traditional shower expansions quickly get more complicated as a function of the number of
emissions, this strategy had only been worked out for a single additional emission prior to this
paper (although the MENLOPS strategy [24] does allow to combine a unitary matching of the first
emission with traditional non-unitary methods for multi-jet matching). Below, we shall general-
ize the unitarity method to arbitrary multiplicities and, as a proof of concept, present a concrete
implementation spanning four successive emissions, including all subleading color terms.

5Technically, this is normally accomplished by means of the veto algorithm Monte-Carlo technique.
6Note, however, that this gets substantially more complicated if the shower process is not completely Markovian, a point

we shall return to.

40

E.g., get from MadGraph

→ Must be able to compute both numerator and denominator
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6Note, however, that this gets substantially more complicated if the shower process is not completely Markovian, a point

we shall return to.

40

E.g., get from MadGraph

→ Must be able to compute both numerator and denominator

Unitarity → No need to impose “matching scale” (Matching corrections applied directly to Markov chain as it evolves 
→ self-regulating → can be applied over all of phase space, also inside jets)
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emission with traditional non-unitary methods for multi-jet matching). Below, we shall general-
ize the unitarity method to arbitrary multiplicities and, as a proof of concept, present a concrete
implementation spanning four successive emissions, including all subleading color terms.

5Technically, this is normally accomplished by means of the veto algorithm Monte-Carlo technique.
6Note, however, that this gets substantially more complicated if the shower process is not completely Markovian, a point

we shall return to.

40

E.g., get from MadGraph

→ Must be able to compute both numerator and denominator

Unitarity → No need to impose “matching scale” (Matching corrections applied directly to Markov chain as it evolves 
→ self-regulating → can be applied over all of phase space, also inside jets)

→ One single unweighted event sample (Effectively, n-parton samples use parton shower itself as phase space generator = 
highly efficient “multi-channel” integration → speed gains expected, + unitarity → unit-weights)
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for an arbitrary tree-level matching strategy, and in the scheme developed here becomes virtually iden-
tical to the POWHEG one. We therefore do not comment on this aspect here, but note that we plan to
return to the inclusion of further loop corrections, at the multileg level, in an upcoming study.

5.1 Matching Strategies

Given a parton shower and a matrix-element generator, there are fundamentally three different ways in
which we shall consider matching the two:

1. Unitarity: The oldest approach [25, 26] consists of working out the shower approximation to a
given fixed order, and correcting the shower splitting functions at that order by a multiplicative
factor given by the ratio of the matrix element to the shower approximation, phase-space point by
phase-space point. We may sketch this as

Matched = Approximate
Exact

Approximate
. (100)

That is, the shower approximation is essentially used as a pre-weighted (stratified) all-orders phase
space generator, on which a more exact answer can subsequently be imprinted order by order in
perturbation theory5. In our notation [29], this translates to applying the following correction
factor to each antenna function ai (or any other kind of shower splitting kernel)

ai → aiP
ME
n , PME

n =
|Mn|2

�
j aj |Mn−1|2

, (101)

where the sum over j runs over all possible ways the shower could have generated the n-parton
state from n− 1 partons6. When these correction factors are inserted back into the shower evolu-
tion, they guarantee that the shower evolution off n− 1 partons correctly reproduces the n-parton
matrix elements, without the need to generate any separate n-parton samples. Moreover, since
the corrections modify the actual shower evolution kernels, the corrections are resummed in the
Sudakov exponential, and finally, since the shower is unitary, an initially unweighted sample of
(n−1)-parton configurations remains unweighted, with no need for a separate event-unweighting
or event-rejection step. (Technically, the exponentiation allows beyond-LL corrections to be re-
summed, thus improving the logarithmic accuracy of the result, while the explicit constraint of
unitarity ensures that the additional non-logarithmic terms that are also exponentiated by this pro-
cedure does not lead to disasters.) There are thus several quite desirable features to this kind of
matching strategy, which is currently employed by PYTHIA, POWHEG, and VINCIA. However,
since traditional shower expansions quickly get more complicated as a function of the number of
emissions, this strategy had only been worked out for a single additional emission prior to this
paper (although the MENLOPS strategy [24] does allow to combine a unitary matching of the first
emission with traditional non-unitary methods for multi-jet matching). Below, we shall general-
ize the unitarity method to arbitrary multiplicities and, as a proof of concept, present a concrete
implementation spanning four successive emissions, including all subleading color terms.

5Technically, this is normally accomplished by means of the veto algorithm Monte-Carlo technique.
6Note, however, that this gets substantially more complicated if the shower process is not completely Markovian, a point

we shall return to.
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return to the inclusion of further loop corrections, at the multileg level, in an upcoming study.

5.1 Matching Strategies

Given a parton shower and a matrix-element generator, there are fundamentally three different ways in
which we shall consider matching the two:

1. Unitarity: The oldest approach [25, 26] consists of working out the shower approximation to a
given fixed order, and correcting the shower splitting functions at that order by a multiplicative
factor given by the ratio of the matrix element to the shower approximation, phase-space point by
phase-space point. We may sketch this as
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That is, the shower approximation is essentially used as a pre-weighted (stratified) all-orders phase
space generator, on which a more exact answer can subsequently be imprinted order by order in
perturbation theory5. In our notation [29], this translates to applying the following correction
factor to each antenna function ai (or any other kind of shower splitting kernel)

ai → aiP
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n =
|Mn|2

�
j aj |Mn−1|2

, (101)

where the sum over j runs over all possible ways the shower could have generated the n-parton
state from n− 1 partons6. When these correction factors are inserted back into the shower evolu-
tion, they guarantee that the shower evolution off n− 1 partons correctly reproduces the n-parton
matrix elements, without the need to generate any separate n-parton samples. Moreover, since
the corrections modify the actual shower evolution kernels, the corrections are resummed in the
Sudakov exponential, and finally, since the shower is unitary, an initially unweighted sample of
(n−1)-parton configurations remains unweighted, with no need for a separate event-unweighting
or event-rejection step. (Technically, the exponentiation allows beyond-LL corrections to be re-
summed, thus improving the logarithmic accuracy of the result, while the explicit constraint of
unitarity ensures that the additional non-logarithmic terms that are also exponentiated by this pro-
cedure does not lead to disasters.) There are thus several quite desirable features to this kind of
matching strategy, which is currently employed by PYTHIA, POWHEG, and VINCIA. However,
since traditional shower expansions quickly get more complicated as a function of the number of
emissions, this strategy had only been worked out for a single additional emission prior to this
paper (although the MENLOPS strategy [24] does allow to combine a unitary matching of the first
emission with traditional non-unitary methods for multi-jet matching). Below, we shall general-
ize the unitarity method to arbitrary multiplicities and, as a proof of concept, present a concrete
implementation spanning four successive emissions, including all subleading color terms.

5Technically, this is normally accomplished by means of the veto algorithm Monte-Carlo technique.
6Note, however, that this gets substantially more complicated if the shower process is not completely Markovian, a point

we shall return to.
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Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced
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Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n

Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced
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After 3 branchings: 48 terms
After 4 branchings: 384 terms
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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(fourth order)(third order)(second order)
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an

36

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 4!Z
Vincia 1.025 + MadGraph 4.426

Strong Ordering
 3!Matched to Z

GGG
PS"

-ordDm
ARI

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 5!Z
Vincia 1.025 + MadGraph 4.426

Strong Ordering
3!Matched to Z

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 6!Z
Vincia 1.025 + MadGraph 4.426

Strong Ordering
3!Matched to Z

Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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GEEKS (Giele, Kosower, Skands): arXiv:1102.2126
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z → 5 and Z → 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z → qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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ms/event
 Z→qq + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

Vincia
0.24 0.62 5.60 112.50

(initialization time = zero)
0.24 0.62 5.60 112.50

Sherpa (Qmatch = 5 GeV) 5.15* 53.00* 220.00* 400.00*
* + initialization time 90,000 ms 420,000 ms 1,320,000 ms 7,920,000 ms

Generator Versions: Pythia 6.425 (with Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0 (*not including initialization), Vincia 1.026 (NLL,NLC, and uncertainties OFF)Generator Versions: Pythia 6.425 (with Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0 (*not including initialization), Vincia 1.026 (NLL,NLC, and uncertainties OFF)Generator Versions: Pythia 6.425 (with Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0 (*not including initialization), Vincia 1.026 (NLL,NLC, and uncertainties OFF)Generator Versions: Pythia 6.425 (with Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0 (*not including initialization), Vincia 1.026 (NLL,NLC, and uncertainties OFF)Generator Versions: Pythia 6.425 (with Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0 (*not including initialization), Vincia 1.026 (NLL,NLC, and uncertainties OFF)

(+ working with J. Lopez-Villarejo at CERN to further increase multi-parton matching speed)
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Uncertainty Variations

A result is only as good as its uncertainty
Normal procedure:

Run MC 2N+1 times (for central + N up/down variations)

Takes 2N+1 times as long 

+ uncorrelated statistical fluctuations 

Automate and do everything in one run
VINCIA: all events have weight = 1

Compute unitary alternative weights on the fly
→ sets of alternative weights representing variations (all with <w>=1)

Same events, so only have to be hadronized/detector-simulated ONCE!
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Weight

Nominal 1

Variation

for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2

αs1a1
P1 , (118)

in a different model that uses αs2 as its coupling (e.g., with a different renormalization scale or scheme)
and a2 as its radiation function (e.g., with different finite terms, different partitioning of shared poles,
different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower would
be affected by keeping track of such relative probabilities down along the shower chain; the Sudakov
factors would remain unmodified. Such a procedure would therefore explicitly break the unitarity that is
so important to resummation applications, leading to possibly exponentially different weights between
the sets, which would be hard to interpret7. More intuitively, a big uncertainty on a very soft branching
happening late in the shower should not be able to significantly change the entire event weight, jets
and all. In the normal shower approach, it is the property of unitarity which keeps such things from
happening; as soon as any correction grows large, its associated Sudakov factor must necessarily become
small soon thereafter, keeping the total size of any correction inside a unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also for
the uncertainty variations, as follows. For each accepted branching, a number of trial branchings have
usually first been generated and discarded, to eliminate the overcounting done by the trial function. In
VINCIA, we have so far not been particularly careful to optimize the choice of trial function (see Section
2.2), and hence we have quite many failed trials. These are relatively cheap to generate, however, so the
code is not significantly slowed by this inefficiency. Moreover, these failed trials actually turn out to be
useful, even essential, in the present context.

Just like eq. (118) expresses the relative probability for a branching to be accepted under two dif-
ferent sets of model parameters, 1 and 2, with 1 playing the role of phase space generator and 2 the
role of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase space gen-
erator (which corresponds to the settings chosen by the user in VINCIA, including matching, subleading
corrections, etc.) is

P1;no = 1− P1 , (119)

whereas the one for the alternative model should be

P2;no = 1− P2 = 1− αs2a2

αs1a1
P1 . (120)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and by
P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In order to
prevent extreme outliers from substantially degrading the statistical precision of the variation samples,
however, we limit the resulting weight adjustments to at most a factor of 2 per branching in the code (in
either direction).

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after 20
such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million, clearly
not a reasonable correction to the total event rate.
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Differences explicitly matched out 

(Up to matched orders)

(Can in principle also include 
variations of matching scheme…)
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Figure 17: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the renormal-
ization scale. L3 data from ref. [55]. Unmatched.

the result of the variations, all matching is switched off, and hence the uncertainty bands are rather
larger than would be the case for default VINCIA settings. The L3 data (black points) [55] are included
mostly to provide a constant reference across the plots; we postpone discussion of them to the section on
LEP comparisons (Section 8). The top panels of each the plots shows MC compared to data, with both
normalized to unity. The bottom panels show the ratio MC/data, with the uncertainties on the data shown
as yellow bands, the inner (lighter) one corresponding to the statistical component only and the outer
(darker) shade corresponding to statistical plus systematic errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively dif-
ferent shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, produces
an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite terms,
Fig. 18, only contribute to the uncertainty for large values of τ = 1− T , as expected. Comparing left to
right in both figures, we conclude that both the features and the magnitude of the full uncertainty bands
on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been included in the VINCIA
code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• VINCIA’s default settings. This is obviously not a true uncertainty variation, but is provided as a
useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
around p⊥.

• MAX and MIN variations of the antenna function finite terms. The default variation corresponds
to an integrated ±2 gluons for gluon emission antennae, and an integrated 1

2 splitting, for gluon
splitting, uniformly distributed over the antenna phase space.

50

Automatic Uncertainties
Vincia:uncertaintyBands = on

Traditional
Variaton

(two separate runs)

Automatic
Variation

(one run)

Renormalization Scale Uncertainty
~ constant relative size

Variation of renormalization scale (no matching)



1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

1/
N

 d
N

/d
(1

-T
)

-310

-210

-110

1

10 L3 
Vincia

1-Thrust (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.145

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

R
el

.U
nc

.

0

1

Finite

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4 1-T (udsc)

0 0.1 0.2 0.3 0.4 0.5

1/
N

 d
N

/d
(1

-T
)

-310

-210

-110

1

10 L3 
a=Max
a=Min

1-Thrust (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.145

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

Figure 18: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the antenna-
function finite terms. L3 data from ref. [55]. Unmatched.

• Two variations in the ordering variable, one being closer to strong ordering in p⊥ and the other to
ordering in themD variable.

• MAX and MIN variations of the subleading color corrections. The specific nature of the variation
depends on whether subleading corrections are switched on in the shower or not. If not, the MAX
variation uses CA for all gluon emission antennae and the MIN one ĈF . If on, the correction
described in Section 4.4 is applied, but the correction itself is then modified by ±50% for the
MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. For more advanced users, some limited
user control over the variations is also included, such as the ability to change the factor of variation of
the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the largest
bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is better than
adding the individual terms together either linearly or quadratically, since the latter would have to be
supplemented by a treatment of correlations that we don’t know. With the maximal-deviation approach,
we are free to add as many uncertainty variations as we like, without the number of variations by itself
leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected, when
switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation is typically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.
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underlying event. We describe both a subtractive and a unitary version of a matched dipole-antenna
shower, and compare the results of a unitarity-based implementation to LEP data.

In sec. 2, we describe in greater detail the ingredients needed for such a shower, as well as our nor-
malization conventions, and compare the origins of different singularities and corresponding logarithms
in different shower formalisms. We also discuss the different matching approaches in more detail. In
sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose specializations
correspond to a wide variety of interesting evolution variables. We then solve the resulting evolution
equation. In sec. 4, we discuss the shower algorithm, as well as improvements that can be made to its
logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-antenna shower to tree-
level matrix elements, and how the approach would extend to higher orders in the fixed-order expansion.
In sec. 7, we comment on hadronization; in sec. 8, we compare the results of running a unitarity-based-
approach implementation of VINCIA to LEP data. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
observable O,

dσH

dO

����Born
=

�
dΦH |M

(0)
H

|
2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state phase space of H (we have suppressed possible inte-
grations over PDF x fractions, in order to avoid clutter), and the δ function projects out a 1-dimensional
slice defined by O evaluated on the set of final-state momenta which we denote {p}H (without the δ
function, the integration over phase space would just give the total cross section, not the differential
one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S, that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH

dO

����
S

=
�

dΦH |M
(0)
H

|
2
S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. (Ultimately, also non-perturbative correc-
tions can be included.)

Algorithmically, we shall cast S as an iterative Markov chain, with an evolution parameter that for-
mally represents the factorization scale of the event, below which all structure is inclusively summed
over. As the Markov chain develops, the evolution parameter will go towards zero, and the event struc-
ture will become more and more exclusively resolved. A transition from a perturbative evolution to a
non-perturbative one can also be inserted, at an appropriate scale, typically around Qhad ∼ 1 GeV. This
scale thus represents the lowest perturbative scale that can appear in the calculations, with all perturba-
tive corrections below it inclusively summed over.

It is instructive to begin by considering the first-order expansion the operator must have in order to
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slice defined by O evaluated on the set of final-state momenta which we denote {p}H (without the δ
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virtual) higher-order corrections to the Born-level expression. (Ultimately, also non-perturbative correc-
tions can be included.)

Algorithmically, we shall cast S as an iterative Markov chain, with an evolution parameter that for-
mally represents the factorization scale of the event, below which all structure is inclusively summed
over. As the Markov chain develops, the evolution parameter will go towards zero, and the event struc-
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non-perturbative one can also be inserted, at an appropriate scale, typically around Qhad ∼ 1 GeV. This
scale thus represents the lowest perturbative scale that can appear in the calculations, with all perturba-
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Depends on Evolution Scale : QE

Legend:
∆ represents no-evolution probability (Sudakov): conserves 
probability = preserves event weights

Sr = Emission probability (partitioned among radiators r)

According to best known approximation to |H+1|2 (e.g., ME or LL shower)

where r runs over “radiators”, whose precise definition, such as partons or dipoles, depend on the chosen
decomposition of the singular structures in |MH+1|

2, and the superscript [r] on the phase space factors
represent that each radiator may in principle be associated with a different phase space factorization.

By the simple rewritings above, we have now obtained a form of the expansion in which the singu-
larity and unitarity structure of S are both explicitly manifest. Deviations from unitarity are associated
solely with the non-singular term K

(1)
H
, and deviations from the universal radiation functions are as-

sociated solely with the non-singular term K
(0)
H+1. In both cases, the generalization to higher orders is

straightforward.
In traditional parton showers, all the non-singular terms are dropped, and hence only the unitary

singular structure remains,

S
(1)({p}H , s,Q

2
E
,O) =



1−
�

r

�
s

Q
2
E

dΦ[r]
H+1

dΦH

Sr



 δ(O −O({p}H))

+
�

r

�
s

Q
2
E

dΦ[r]
H+1

dΦH

Sr δ(O −O({p}H+1)) . (8)

Exponentiating the leading singularities, we may replace them by the Sudakov factor,

∆({p}, s,Q2
j
) = exp



−
�

r

�
s

Q
2
j

dΦ[r]
H+1

dΦH

Sr



 . (9)

We thereby obtain the all-orders pure-shower Markov chain,

S({p}H , s,Q
2
E ,O) = ∆({p}H , s,Q

2
E) δ (O −O({p}H))

� �� �
H + 0 exclusive above QE

+
�

r

�
s

Q
2
E

dΦ[r]
H+1

dΦ H

Sr ∆({p}H , s,Q
2
H+1) S({p}H+1, Q

2
H+1, Q

2
E
,O)

� �� �
H + 1 inclusive above QE

.

(10)

More on the Markov formalism can be found in [29]. We hope this brief introduction nevertheless
serves to put the developments below in context, and note that we will return to the restoration of the
finite terms in the section on matching.

2.2 Dipole-Antenna Showers

In leading-log dipole-antenna showers, the fundamental step is a Lorentz invariant 2 → 3 branching
process by which two on-shell “parent” partons are replaced by three on-shell “daughter” partons. This
2→ 3 process makes use of three ingredients:

1. An antenna function that captures the leading tree-level singularities of QCD matrix elements.
This is the equivalent of the splitting functions used in traditional parton showers, with some
important differences, as we discuss below.
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serves to put the developments below in context, and note that we will return to the restoration of the
finite terms in the section on matching.

2.2 Dipole-Antenna Showers

In leading-log dipole-antenna showers, the fundamental step is a Lorentz invariant 2 → 3 branching
process by which two on-shell “parent” partons are replaced by three on-shell “daughter” partons. This
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Sudakov Expansion

agree with NLO perturbation theory,

S
(1)({p}H ,O) =

�

1 +
2Re[M (0)

H
M (1)∗

H
]

|M (0)
H

|2

�

δ(O −O({p}H))

+
� dΦH+1

dΦH

|M (0)
H+1|

2

|M (0)
H

|2
δ(O −O({p}H+1)) , (3)

with M (1)
H
the one-loop amplitude and the ratio dΦH+1 /dΦH in the second line representing a phase-

space factorization to which we shall return below. The two correction terms are separately divergent
and hence equation eq. (3) only has a symbolic formal meaning. It cannot be used for actual calculations.
Introducing the factorization scale mentioned above, and summing inclusively over all emissions below
it, we obtain, instead

S
(1)({p}H , s,Q2

E ,O) =



1 +
2Re[M (0)

H
M (1)∗

H
]

|M (0)
H

|2
+

�
Q

2
E

0

dΦH+1

dΦH

|M (0)
H+1|

2

|M (0)
H

|2



 δ(O −O({p}H))

+
�

s

Q
2
E

dΦH+1

dΦH

|M (0)
H+1|

2

|M (0)
H

|2
δ(O −O({p}H+1)) , (4)

where the factorization scale, QE (the “evolution scale”), separates resolved from unresolved regions.
This expression is well-defined if the functional form of QE properly separates singular from non-
singular regions, i.e., is “infrared sensible” [30]. (Corrections to this expression arising from scales
below QE will be taken into account by eventually letting QE → 0.) Due to the KLN theorem [?], the
real and virtual singularities must be equal and of opposite sign, thus we can rewrite

2Re[M (0)
H

M (1)∗
H

]

|M (0)
H

|2
= K(1)

H
−

�
s

0

dΦH+1

dΦH

|M (0)
H+1|

2

|M (0)
H

|2
, (5)

where K(1)
H
is a non-singular function, allowing us to express eq. (4) as

S
(1)({p}H , s,Q2

E
,O) =



1 + K(1)
H
−

�
s

Q
2
E

dΦH+1

dΦH

|M (0)
H+1|

2

|M (0)
H

|2



 δ(O −O({p}H))

+
�

s

Q
2
E

dΦH+1

dΦH

|M (0)
H+1|

2

|M (0)
H

|2
δ(O −O({p}H+1)) . (6)

In this form, the NLO correction to the total cross section is given solely by the term K (1)
H
, with the

remaining terms having been written in an explicitly unitary construction.
We can also rewrite the exact ratio |MH+1|

2/|MH |2 as a process-dependent non-singular term plus
a sum over universal singular ones,

dΦH+1

dΦH

|M (0)
H+1|

2

|M (0)
H

|2
=

dΦH+1

dΦH

K(0)
H+1 +

�

r

dΦ[r]
H+1

dΦH

Sr , (7)
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where the factorization scale, QE (the “evolution scale”), separates resolved from unresolved regions.
This expression is well-defined if the functional form of QE properly separates singular from non-
singular regions, i.e., is “infrared sensible” [30]. (Corrections to this expression arising from scales
below QE will be taken into account by eventually letting QE → 0.) Due to the KLN theorem [?], the
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In this form, the NLO correction to the total cross section is given solely by the term K (1)
H
, with the

remaining terms having been written in an explicitly unitary construction.
We can also rewrite the exact ratio |MH+1|
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a sum over universal singular ones,
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where r runs over “radiators”, whose precise definition, such as partons or dipoles, depend on the chosen
decomposition of the singular structures in |MH+1|

2, and the superscript [r] on the phase space factors
represent that each radiator may in principle be associated with a different phase space factorization.

By the simple rewritings above, we have now obtained a form of the expansion in which the singu-
larity and unitarity structure of S are both explicitly manifest. Deviations from unitarity are associated
solely with the non-singular term K

(1)
H
, and deviations from the universal radiation functions are as-

sociated solely with the non-singular term K
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H+1. In both cases, the generalization to higher orders is

straightforward.
In traditional parton showers, all the non-singular terms are dropped, and hence only the unitary
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We thereby obtain the all-orders pure-shower Markov chain,
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More on the Markov formalism can be found in [29]. We hope this brief introduction nevertheless
serves to put the developments below in context, and note that we will return to the restoration of the
finite terms in the section on matching.

2.2 Dipole-Antenna Showers

In leading-log dipole-antenna showers, the fundamental step is a Lorentz invariant 2 → 3 branching
process by which two on-shell “parent” partons are replaced by three on-shell “daughter” partons. This
2→ 3 process makes use of three ingredients:

1. An antenna function that captures the leading tree-level singularities of QCD matrix elements.
This is the equivalent of the splitting functions used in traditional parton showers, with some
important differences, as we discuss below.
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with M (1)
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the one-loop amplitude and the ratio dΦH+1 /dΦH in the second line representing a phase-

space factorization to which we shall return below. The two correction terms are separately divergent
and hence equation eq. (3) only has a symbolic formal meaning. It cannot be used for actual calculations.
Introducing the factorization scale mentioned above, and summing inclusively over all emissions below
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where the factorization scale, QE (the “evolution scale”), separates resolved from unresolved regions.
This expression is well-defined if the functional form of QE properly separates singular from non-
singular regions, i.e., is “infrared sensible” [30]. (Corrections to this expression arising from scales
below QE will be taken into account by eventually letting QE → 0.) Due to the KLN theorem [?], the
real and virtual singularities must be equal and of opposite sign, thus we can rewrite
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In this form, the NLO correction to the total cross section is given solely by the term K (1)
H
, with the

remaining terms having been written in an explicitly unitary construction.
We can also rewrite the exact ratio |MH+1|

2/|MH |2 as a process-dependent non-singular term plus
a sum over universal singular ones,
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where r runs over “radiators”, whose precise definition, such as partons or dipoles, depend on the chosen
decomposition of the singular structures in |MH+1|

2, and the superscript [r] on the phase space factors
represent that each radiator may in principle be associated with a different phase space factorization.

By the simple rewritings above, we have now obtained a form of the expansion in which the singu-
larity and unitarity structure of S are both explicitly manifest. Deviations from unitarity are associated
solely with the non-singular term K

(1)
H
, and deviations from the universal radiation functions are as-

sociated solely with the non-singular term K
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H+1. In both cases, the generalization to higher orders is

straightforward.
In traditional parton showers, all the non-singular terms are dropped, and hence only the unitary

singular structure remains,
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Exponentiating the leading singularities, we may replace them by the Sudakov factor,
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We thereby obtain the all-orders pure-shower Markov chain,
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More on the Markov formalism can be found in [29]. We hope this brief introduction nevertheless
serves to put the developments below in context, and note that we will return to the restoration of the
finite terms in the section on matching.

2.2 Dipole-Antenna Showers

In leading-log dipole-antenna showers, the fundamental step is a Lorentz invariant 2 → 3 branching
process by which two on-shell “parent” partons are replaced by three on-shell “daughter” partons. This
2→ 3 process makes use of three ingredients:

1. An antenna function that captures the leading tree-level singularities of QCD matrix elements.
This is the equivalent of the splitting functions used in traditional parton showers, with some
important differences, as we discuss below.
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P. Skands

Simple Solution

Generate Trials without imposing strong ordering
At each step, each dipole allowed to fill its entire phase space

Overcounting removed by matching
(revert to strong ordering beyond matched multiplicities)
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Figure 24: Phase-space-ordered antenna approximation compared to 2nd order QCD matrix elements.
Note: this roughly corresponds to a mass-ordered parton shower without coherence. Although the
double-soft limit is eventually reached, there is a large overcounting over most of phase space, reflecting
a lack of coherence. Also, the double counting extends into the double-collinear region at the top of the
lower left-hand plot. This ordering, therefore, does not lead to the correct multiple-collinear singular
limit.
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p⊥, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p⊥ and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z → 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p⊥, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).
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where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
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⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).
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p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p⊥ and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z → 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Figure 28: Energy-Ordered antenna approximation compared to 2nd order QCD matrix elements, using
a definition of energy a la Dokshitzer-Marchesini (DM). Although a small dead zone in the unordered
region still exists (0.6% of the sampled points), there remains a very large overcounting over significant
parts of phase space, including the double-collinear region mentioned before, at the top of the lower
left-hand plot. We conclude that this variable does not lead to the correct multiple-collinear singular
limit.
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Figure 20: Comparison to the L3 light-flavor data set [55] (black points) at the Z pole for the 1−T (left),
C (middle), and D (right) event shape variables. VINCIAis shown in thin blue lines, with shaded light-
blue bands representing the perturbative uncertainty estimate. The middle pane on each plot illustrates
the relative composition of the VINCIA uncertainty band. For comparison, the PYTHIA8 result is shown
with a thick red line with open circles.

8 Comparison to LEP Data

To keep questions of mass effects separate (the implementation of which will be reported on in a separate
paper [51]), we shall here mainly compare to a useful data set presented by the L3 collaboration [55], in
which the contributions from light flavors (defined as u, d, s, c) has been separated from that of events
containing b quarks.

Unfortunately, however, the L3 light-flavor data set does not contain jet observables. We therefore
include comparisons also to ALPEH and DELPHI jet observables that include all flavors, using a pre-
liminary implementation of mass effects in VINCIA [51]. Since the largest correction specific to b quarks
is simply the B meson decay, for which we rely on PYTHIA’s string hadronization and hadron decay
model, we believe these comparisons are still meaningful, even if we must postpone a full discussion of
them to the follow-up study in ref. [51].

In Fig. 20, we compare default VINCIA and PYTHIA to the L3 light-flavor data for the Thrust (left)
and the C (middle) andD (right) event shape parameters [55]. Dashed vertical lines indicate the bound-
aries between the 3- and 4-jet regions for the Thrust and C parameter (the right-most dashed line on the
Thrust plot indicates the boundary of the 5-jet region). The D parameter measures the deviation from
planar events and is a 4-jet observable over its entire range. Despite substantial differences in the shower
modeling, matching level, and hadronization tune parameters, the two models give almost identical re-
sults. Further, since PYTHIA is already giving a very good description of this data, there is little for the
additional matching in VINCIA to improve on here.

Still on Fig. 20, VINCIA’s uncertainty bands give about a 20% uncertainty over most of the observ-
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VINCIA adds uncertainty bands + can look at more exclusive observables?



Multijet resolution scales

y45 = scale at which 5th jet becomes resolved ~ “scale of 5th jet”
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Figure 23: Comparison to ALEPH jet resolution measurements [56] (black points) at the Z pole. VIN-
CIAis shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty
estimate. The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty
band. For comparison, the PYTHIA8 result is shown with a thick red line with open circles.

from matching to the 4-parton matrix elements, and both codes are able to describe the 4-jet angles
within a roughly 5% margin, which is comparable to the experimental precision.

Finally, in Fig. 23, we compare to the jet resolutions measured by the ALEPH experiment [56].
Firstly, note that pure PYTHIA is basically able to describe all the distributions, within the experimental
accuracy, despite its being matched only to Z → 3 partons. On the one hand, this is good, since it
implies that the PYTHIA 8 shower is delivering a quite good approximation to QCD also beyond the
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4-Jet Angles
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Figure 22: Comparison to DELPHI 4-jet angle measurements (black points) at the Z pole. VINCIAis
shown in thin blue lines, with shaded light-blue bands representing the perturbative uncertainty estimate.
The middle pane on each plot illustrates the relative composition of the VINCIA uncertainty band. For
comparison, the PYTHIA8 result is shown with a thick red line with open circles.

better understanding of the full uncertainties. All we can say at this level is that the charged-multiplicity
distribution appears to suffer from a larger perturbative uncertainty than the fragmentation spectrum.

A further set of variables that is interesting in the context of differential multi-jet production are the
so-called four-jet angles, which were also measured at LEP. Not having found a public data repository
containing this particular data, however, we instead resorted to extracting the data point values from the
HERWIG++ source code [35], where it is encoded for validation and tuning purposes. A comparison
between this data and default VINCIA and PYTHIA is shown in Fig. 22. Again, it is clear that PYTHIA
itself is already doing a very good job. Since PYTHIA is not matched to 4-jet matrix elements and
also does not contain explicit spin correlations in the shower, this may at first be surprising. However,
PYTHIA does correlate the production and decay planes of gluons in the shower, and thereby includes
the leading effect of gluon polarization. The VINCIA shower, on the other hand, contains no polarization
effects a priori. In VINCIA’s case, the effective correlations of the four-jet angles are instead coming
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Interesting to look at more exclusive observables, but which ones?

4-jet angles
Sensitive to 
polarization effects

Good News
VINCIA is doing 
reliably well

Non-trivial verification 
that shower+matching 
is working, etc. 

Higher-order 
matching needed?

PYTHIA 8 already 
doing a very good job 
on these observables


